Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 13: 916610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774448

RESUMO

Simulated cattle manure deposition was used to estimate nutrient transfer to soil and oats and to investigate changes in microbial community composition and functional groups in oat rhizospheres. Nutrient absorption and return efficiency were calculated as a series of standard calculation formulas, and total nutrient transfer efficiency was nutrient absorption efficiency plus nutrient return efficiency. In total, 74.83% of nitrogen (N) and 59.30% of phosphorus (P) in cattle manure were transferred to soil and oats, with 11.79% of N and 7.89% of P in cattle manure absorbed by oats, and the remainder sequestered in the soil for 80 days after sowing. Cattle manure increased oat root length, surface, and volume under 0.2 mm diameter, and improved relative abundance of the microbiome known to be beneficial. In response to cattle manure, several bacteria known to be beneficial, such as Proteobacteria, Bacteroidota, and Firmicutes at phyla the level and Pseudoxanthomonas, Pseudomonas, and Sphingomonas at the genus level, were positively related to oat biomass and nutrient accumulation. For fungal communities, the relative abundance of Ascomycota is the predominant phylum, which varied in a larger range in the control treatment (81.0-63.3%) than the cattle manure deposition treatment (37.0-42.9%) as plant growing days extend. The relevant abundance of Basidiomycota known as decomposer was higher in cattle manure deposition treatment compared to that in control treatment at 15 days after sowing. More importantly, cattle manure deposition inhibited trophic mode within pathotroph like Alternaria and Fusarium fungal genus and promoted saprotroph and symbiotroph.

2.
Microorganisms ; 10(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35744643

RESUMO

The decomposition of litter plays an important role in the return of forest soil nutrients, as well as the growth and productivity of plants. With this study, we aimed to determine the impact of litter mulching on different tissues of Cinnamomum migao, a rare Chinese endemic species. In particular, seeds and pericarp are easily overlooked components of C. migao litter. In this study, we tested control (uncovered litter) and litter (leaf, branch, seed, and pericarp) mulching conditions and conducted a one-year litter decomposition experiment. The enzyme activities of urease enzyme (UE) and invertase enzyme (INV) were significantly improved by litter mulching. Catalase (CAT) enzyme activities in leaf, branch, and seed litter mulching were lower than in the control, whereas CAT activity in pericarp mulching was significantly higher than in the control. Although Mortierella, Cladophialophora, Acidothermus, Sphingomonas, and Burkholderia were the dominant microbes of topsoil in different mulching treatments, there were differences in the number and connectivity of microbial communities, and this change was correlated with soil organic carbon (SOC) and CAT enzyme activity. Compared with leaves and branches, seeds and pericarp as litter are also very important for nutrient return and affect topsoil microbes in C. migao forest, which may be of significance for the growth feedback of C. migao in biennial bearing.

3.
Ying Yong Sheng Tai Xue Bao ; 33(2): 321-328, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35229504

RESUMO

To understand the impacts of mid-subtropical forest conversion on carbon and nutrient cycling, we conducted a 4-year investigation to examine litterfall, nutrient return and nutrient use efficiency of Castanopsis carlesii natural forest, C. carlesii secondary forest and Cunninghamia lanceolata plantation which were transformed from C. carlesii natural forest. The results showed that after C. carlesii natural forest was transformed into C. carlesii secon-dary forest and C. lanceolata plantation, the annual litter production decreased by 29.0% and 45.7%, nitrogen return of litter decreased by 34.0% and 72.7%, and phosphorus return decreased by 38.1% and 56.4%, respectively. The amount of carbon returned from litterfall in C. carlesii natural forest was 25.6% and 44.3% higher than that in C. carlesii secondary forest and C. lanceolata plantation, respectively. For C. lanceolata plantation, C. carlesii secondary forest and C. carlesii natural forest, nitrogen use efficiency of litterfall was 175.4, 94.8 and 92.0 kg·kg-1, respectively, and phosphorus use efficiency of litterfall was 3031.0, 2791.6 and 2537.2 kg·kg-1, respectively. It was concluded that C. lanceolata plantation was more limited by nitrogen compared with C. carlesii natural forest and secondary forest, and the effects of phosphorus limitation had similar effects on the three forests.


Assuntos
Cunninghamia , Solo , Carbono/análise , China , Florestas , Nitrogênio/análise , Nutrientes
4.
Front Plant Sci ; 12: 799424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154189

RESUMO

Strip clearcutting can significantly reduce the harvesting costs of moso bamboo forests. Although bamboo is characterized by rapid accumulation of biomass, it is still a concern that this management method may reduce long-term productivity. Nutrient cycling has long been considered essential for forests to maintain high primary productivity. However, nutrient cycling of bamboo forests after strip cutting has not been previously reported. We conducted a strip clearcutting experiment and surveyed the litter dynamics for 1 year. We assessed changes in litter nutrients in response to the cutting and calculated the nutrient resorption efficiency and litter decomposition rate to evaluate the effect on nutrient use efficiency and nutrient return. Our results showed that strip cutting had no significant effect on litter production and nutrient return in the moso bamboo forest (p > 0.05). However, annual litter biomass and nutrient return in reserved belts (RB) were significantly higher than those in the control (CK) (p < 0.05). P and K resorption efficiencies in RB were significantly higher than in CK during certain periods of bamboo growth (p < 0.05). We also observed that the annual decay constant of CK was significantly higher than that of plots that were strip clearcut (SC) (p < 0.05). Our results suggest that strip cutting does not affect nutrient use efficiency or storage in the short term.

5.
Rev. biol. trop ; 61(2): 515-529, Jun. 2013. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-675447

RESUMO

Azadirachta indica is a tree species which use is steadily increasing for restoration of tropical and subtropical arid and degraded lands throughout the world. The objective of this research study was to evaluate the potential of these plantations as an active restoration model for the recovery of soils under desertification in arid lands of Colombia. Litter traps and litter-bags were installed in twenty 250m² plots. Green leaves and soil samples inside and outside this species plantations were taken, and their elemental concentrations were determined. Litterfall, leaf litter decomposition and foliar nutrient resorption were moni- tored for one year. The annual contributions of organic material, such as fine litterfall, represented 557.54kg/ha, a third of which was A. indica leaves. The greatest potential returns of nutrients per foliar litterfall were from Ca (4.6kg/ha) and N (2.4kg/ha), and the smallest potential returns came from P (0.06kg/ha). A total of 68% of the foliar material deposited in litter-bags disappeared after one year. The greatest release of nutrients was that of K (100%), and the least was that of N (40%). P was the most limiting nutrient, with low edaphic availability and high nutrient use efficiency from Vitousek´s index (IEV=3176) and foliar nutrient resorption (35%). Despite these plantations are young, and that they have not had forestry management practices, as an active restoration model, they have revitalized the biogeochemical cycle, positively modifying the edaphic parameters according to the increases in organic material, P and K of 72%, 31% and 61%, respectively. Furthermore, they improved the stability of aggregates and the microbe respiration rates. The forest plantation model with exotic species has been opposed by different sectors; however, it has been acknowledged that these projects derive many benefits for the restoration of biodiversity and ecosystemic functions. The conditions of severe land degradation demand the initial use of species, such as A. indica, that can adapt quickly and successfully, and progressively reestablish the biogeochemical cycle.


Azadirachta indica A. Juss (Nim) ha sido ampliamente empleada en procedimientos de restauración, por lo tanto se evaluó el potencial de sus plantaciones para restaurar tierras secas degradadas por sobrepastoreo, vía reactivación del ciclo biogeoquímico. En 20 parcelas de 250m², se instalaron trampas de hojarasca y litter-bags. Se tomaron muestras de hojas maduras y de suelos dentro y fuera de las plantaciones, y se determinaron sus contenidos elementales. Fueron monitoreados la caída de hojarasca, la descomposición de hojarasca y la reabsorción de nutrientes foliares durante un año. Los aportes anuales de hojarasca fina representaron 557.54kg/ha (33% hojas de Nim). Los mayores retornos potenciales de nutrientes vía foliar fue- ron de Ca (4.6kg/ha) y N (2.4kg/ha) y los menores de P (0.06kg/ha). El 68% del material se descompuso tras un año. La mayor liberación de nutrientes fue de K (100%) y la menor de N (40%). El P fue el nutriente más limitante, con baja disponibilidad edáfica y alta eficiencia en su uso según el Índice de Vitousek (IEV=3 176) y la reabsorción foliar (35%). Estas plantaciones juveniles demostraron efectividad en la reactivación del ciclo biogeoquímico, que mejoraron parámetros edáficos, según incrementos de materia orgánica, P y K; 72%, 31% y 61%, respectiva- mente. Además mejoraron la estabilidad de agregados y las tasas de respiración microbiana.


Assuntos
Azadirachta/metabolismo , Conservação dos Recursos Naturais/métodos , Folhas de Planta/metabolismo , Solo/química , Árvores/metabolismo , Biodegradação Ambiental , Colômbia , Nitrogênio/análise , Fósforo/análise
6.
Rev. biol. trop ; 59(4): 1883-1894, Dec. 2011. tab
Artigo em Espanhol | LILACS | ID: lil-646559

RESUMO

Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia. Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5Mg ha/y) and in pine (7.8Mg ha/y), but very low in cypress (3.5Mg ha/y). Litter standing was 1.76, 1.73 and 1.3Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115kg/ha), followed by oak (78kg/ha) and cypress (24kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains. Rev. Biol. Trop. 59 (4): 1883-1894. Epub 2011 December 01.


La caída y descomposición de hojarasca representan los principales ingresos de materia orgánica y nutrientes a los ecosistemas forestales. Se estudiaron la caída y acumulación de hojarasca fina y el retorno de nutrientes, en un robledal (Quercus humboldtii) y en plantaciones de pino (Pinus patula) y ciprés (Cupressus lusitanica) en tierras altas de Colombia. La caída de hojarasca fina fue similar entre el robledal (7.5Mg/ha.a) y el pinar (7.8Mg/ha.a), y muy inferior en el cipresal (3.5Mg/ha.a). El mantillo representó 1.76, 1.73 y 1.3Mg/ha.a en el robledal, pinar y cipresal, respectivamente. El tiempo medio de residencia (TMR) del mantillo siguió la secuencia: cipresal (3.3 años)>pinar (2.1 años)>robledal (1.8 años). La cantidad de nutrientes retenidos en el mantillo siguió la secuencia: pinar (115kg/ ha)>robledal (78kg/ha)>cipresal (24kg/ha). Los menores TMR de nutrientes se presentaron para la hojarasca foliar del robledal, en su mayoría inferiores a 1.0 años. En términos de la función ecosistémica en el robledal los procesos estudiados son muy superiores vía provisión de nutrientes al suelo y regulación de los ciclos biogeoquímicos, aspectos que deben ser considerados previa implementación de programas de repoblamiento forestal.


Assuntos
Biodegradação Ambiental , Traqueófitas/metabolismo , Pinus/metabolismo , Folhas de Planta/metabolismo , Solo/química , Árvores/metabolismo , Altitude , Colômbia , Ecossistema
7.
Acta biol. colomb ; 15(2): 289-308, ago. 2010.
Artigo em Espanhol | LILACS | ID: lil-635025

RESUMO

La producción de hojarasca, el retorno y la reabsorción de nutrientes, y la eficiencia en su uso, fueron estudiados durante un año en plantaciones de Acacia mangium estable-cidas en suelos degradados por minería aurífera en la región del Bajo Cauca colom-biano. La producción anual de hojarasca fina fue de 10,4 Mg ha-1 y estuvo dominada por la fracción foliar (54%), seguida del material reproductivo (24%), y en menor pro-porción por otros restos (6%) y hojas de otras especies (1,5%). Los mayores retornos de materia orgánica y nutrientes se presentaron en los sitios clasificados como de calidad alta, en tanto que la práctica de subsolado del suelo, previo establecimiento de las plantaciones, no mostró efectos significativos sobre estos. La hojarasca foliar mostró una concentración alta de N y consecuentemente, dados los altos valores de producción de esta fracción, un retorno potencial alto de N. El P, con baja concentración foliar y un bajo retorno potencial, además de los altos valores de los índices de eficiencia en su uso y de reabsorción foliar, fue el nutriente más limitante. Los altos valores de producción de hojarasca fina y de retorno potencial de nutrientes determinados en este es-tudio, muestran que la especie Acacia mangium tiene un gran potencial para la recupera-ción de áreas degradadas, a partir del restablecimiento de los ciclos biogeoquímicos.


Fine litter production, nutrient return, nutrient resorption, and nutrient use efficiency were studied during one year in Acacia mangium forest plantations in mining gold degraded soils at the Bajo Cauca region of Colombia. Annual fine litter production was estimated at 10.4 Mg ha-1 and it was dominated by the leaf fraction (54%), followed by the reproduc-tive material (24%) and to a lesser proportion by other debris (6%) and other species leaves (1.5%). The highest organic matter and nutrients returns were found on sites classified as high quality. Soil plowing realized previous Acacia mangium planting, did not show any significant effect on organic matter and nutrients returns. A. mangium leaf litter had a high N concentration and consequently, given the high leaf litter production values, it was found a high N return. By the opposite, leaf litter P content and P returns via litter fall were very low. The high values found for P retranslocation and P use efficiency indexes showed that P was the most limiting nutrient for the species. The high values of fine litter production and nutrient return via leaf litter indicate that A. mangium has a great capacity for degraded areas reclamation, as of the restoration of the biogeochemical cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...