Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Cell Neurosci ; 15: 646413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716678

RESUMO

There are more than 1000 odorant receptor (OR) genes in the mouse genome. Each olfactory sensory neuron expresses only one of these genes, in a monoallelic fashion. The transcript abundance of homologous OR genes vary between distinct mouse strains. Here we analyzed the expression of the OR gene Olfr17 (also named P2) in different genomic contexts. Olfr17 is expressed at higher levels in the olfactory epithelium from 129 mice than from C57BL/6 (B6) mice. However, we found that in P2-IRES-tauGFP knock-in mice, the transcript levels of the 129 Olfr17 allele are highly reduced when compared to the B6 Olfr17 allele. To address the mechanisms involved in this variation we compared the 5' region sequence and DNA methylation patterns of the B6 and 129 Olfr17 alleles. Our results show that genetic variations in cis regulatory regions can lead to differential DNA methylation frequencies in these OR gene alleles. They also show that expression of the Olfr17 alleles is largely affected by the genetic background, and suggest that in knock-in mice, expression can be affected by epigenetic modifications in the region of the targeted locus.

2.
BMC Genomics ; 21(1): 196, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126975

RESUMO

BACKGROUND: Olfactory receptor (OR) genes are the largest multi-gene family in the mammalian genome, with 874 in human and 1483 loci in mouse (including pseudogenes). The expansion of the OR gene repertoire has occurred through numerous duplication events followed by diversification, resulting in a large number of highly similar paralogous genes. These characteristics have made the annotation of the complete OR gene repertoire a complex task. Most OR genes have been predicted in silico and are typically annotated as intronless coding sequences. RESULTS: Here we have developed an expert curation pipeline to analyse and annotate every OR gene in the human and mouse reference genomes. By combining evidence from structural features, evolutionary conservation and experimental data, we have unified the annotation of these gene families, and have systematically determined the protein-coding potential of each locus. We have defined the non-coding regions of many OR genes, enabling us to generate full-length transcript models. We found that 13 human and 41 mouse OR loci have coding sequences that are split across two exons. These split OR genes are conserved across mammals, and are expressed at the same level as protein-coding OR genes with an intronless coding region. Our findings challenge the long-standing and widespread notion that the coding region of a vertebrate OR gene is contained within a single exon. CONCLUSIONS: This work provides the most comprehensive curation effort of the human and mouse OR gene repertoires to date. The complete annotation has been integrated into the GENCODE reference gene set, for immediate availability to the research community.


Assuntos
Sequência Conservada , Éxons/genética , Locos de Características Quantitativas , Receptores Odorantes/genética , Animais , Curadoria de Dados/métodos , Bases de Dados Genéticas , Loci Gênicos , Genoma Humano , Humanos , Camundongos , Pseudogenes
3.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540522

RESUMO

The evolution of mammalian olfaction is manifested in a remarkable diversity of gene repertoires, neuroanatomy and skull morphology across living species. Olfactory receptor genes (ORGs), which initiate the conversion of odorant molecules into odour perceptions and help an animal resolve the olfactory world, range in number from a mere handful to several thousand genes across species. Within the snout, each of these ORGs is exclusively expressed by a discrete population of olfactory sensory neurons (OSNs), suggesting that newly evolved ORGs may be coupled with new OSN populations in the nasal epithelium. Because OSN axon bundles leave high-fidelity perforations (foramina) in the bone as they traverse the cribriform plate (CP) to reach the brain, we predicted that taxa with larger ORG repertoires would have proportionately expanded footprints in the CP foramina. Previous work found a correlation between ORG number and absolute CP size that disappeared after accounting for body size. Using updated, digital measurement data from high-resolution CT scans and re-examining the relationship between CP and body size, we report a striking linear correlation between relative CP area and number of functional ORGs across species from all mammalian superorders. This correlation suggests strong developmental links in the olfactory pathway between genes, neurons and skull morphology. Furthermore, because ORG number is linked to olfactory discriminatory function, this correlation supports relative CP size as a viable metric for inferring olfactory capacity across modern and extinct species. By quantifying CP area from a fossil sabertooth cat (Smilodon fatalis), we predicted a likely ORG repertoire for this extinct felid.


Assuntos
Osso Etmoide/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Receptores Odorantes/genética , Olfato/fisiologia , Animais , Mamíferos/genética , Receptores Odorantes/metabolismo , Tomografia Computadorizada por Raios X
4.
São Paulo; s.n; s.n; 2018. 83 p. tab, ilus, graf.
Tese em Português | LILACS | ID: biblio-909508

RESUMO

Os genes de receptores olfatórios (OR) pertencem a uma família de proteínas de membrana formada por cerca de 1000 genes no genoma de camundongo. Os genes OR são expressos de forma monogênica e monoalélica nos neurônios olfatórios (OSNs). No entanto, ainda não está claro o mecanismo que permite essa forma de expressão peculiar, sobretudo, qual o papel da metilação de DNA nesse processo. Nosso estudo determinou o padrão de metilação de DNA da região promotora e codificadora do gene Olfr17. Em células de epitélio olfatório (MOE) de camundongos adultos, observamos na região codificadora (CDS) do gene uma frequência de metilação em dinucleotídeos CpG 58%, enquanto que na sua região promotora ela foi bem mais baixa. Os níveis de metilação do Olfr17 em MOE de embrião (E15.5) e fígado foram similares aos observados em MOE de animais adultos. Em seguida, analisamos se a metilação de DNA pode regular a expressão gênica do Olfr17. Utilizando animais transgênicos onde os neurônios olfatórios que expressam Olfr17 também expressam GFP, pudemos selecionar neurônios olfatórios GFP+ e analisar a metilação do gene Olfr17, que está ativo nestas células. Verificamos que o padrão geral de metilação do Olfr17, tanto na região CDS como na região promotora, não se altera quando este gene está ativo. Este resultado indica que alterações na metilação do gene Olfr17 não são necessárias para que este receptor seja expresso. Finalmente, verificamos que a região promotora do gene Olfr17, de duas linhagens de camundongos diferentes, a C57BL/6 e a 129, possuem dois polimorfismos de base única (SNPs) que alteram o conteúdo CpG. Devido a estes SNPs, a linhagem 129 apresenta dois sítios CpG adicionais, inexistentes na linhagem C57BL/6. Nossas análises mostraram que estes CpGs são frequentemente metilados, o que torna o promotor do Olfr17 de 129 significativamente mais metilado que o promotor de C57BL/6. Em seguida, nós analisamos o nível de expressão no MOE dos dois alelos de Olfr17, o 129 e o C57BL/6, utilizando ensaios de RT-qPCR. Estes experimentos demonstraram que o nível de expressão do alelo 129, que possui 3 CpGs metiladas em seu promotor, é menor que o do alelo C57BL/6, que apresenta apenas uma CpG que é pouco metilada em seu promotor. Nossos resultados sugerem que as alterações na região promotora influenciam a probabilidade com que o gene OR é escolhido para ser expresso no MOE


Olfactory receptor (OR) genes belong to a large family of membrane proteins composed of 1000 genes in the mouse genome. The OR genes are expressed in the olfactory sensory neurons (OSNs) in a monogenic and monoallelic fashion. However, the mechanisms that govern OR gene expression are unclear. Here we asked whether DNA methylation plays a role in the regulation of OR gene expression. We first determined the DNA methylation pattern in the coding (CDS) and promoter regions of the odorant receptor gene Olfr17. In olfactory epithelium (MOE) cells, the CpG methylation level in the CDS is 58% but is much lower in the promoter region of the gene. In embryonic MOE (E15.5) and liver, the levels of Olfr17 DNA methylation are similar to the ones shown in adult MOE. We next analyzed whether DNA methylation is involved in Olfr17 regulation. We isolated GFP+ neurons from transgenic mice that coexpress GFP with Olfr17, and analyzed the DNA methylation pattern of the Olfr17, which is active in these cells. We found that the general methylation pattern, both, in the coding and promoter regions is not altered in the active gene. These results indicate that changes in DNA methylation are not required for the activation of Olfr17. Finally, we found that the Olfr17 promoter region from two different mouse strains, C57BL/6 and 129, has two single-nucleotide polymorphisms (SNPs) that alter the CpG content. The SNPs lead to the existence of two additional CpGs in the 129 allele, which are absent in the C57BL/6 allele. These CpGs are frequently methylated, making the 129 Olfr17 promoter significantly more methylated than the Olfr17 promoter from C57BL/6. We next performed RT-qPCR experiments to analyze the expression levels of the 129 and C57BL/6 Olfr17 alleles in the MOE. These experiments showed that the expression level of the 129 Olfr17 allele, which contains three methylated CpGs in its promoter region, is lower than the one from C57BL/6, which contains only one, undermethylated CpG, in its promoter. Our results suggest that these promoter modifications regulate the probability of the OR gene choice


Assuntos
Animais , Masculino , Feminino , Camundongos , Receptores Odorantes/análise , Metilação de DNA/fisiologia , Polimorfismo de Nucleotídeo Único , Variação Genética , Expressão Gênica
5.
Eur J Med Genet ; 60(9): 445-450, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28602932

RESUMO

Using SNP array and FISH analysis, a patient with moderate intellectual disability and obesity was found to harbour an atypical 1.6 Mb inverted duplication on 8p23.1, directly flanked by a distally located interstitial deletion of 2.3 Mb and a terminal segmental uniparental disomy. The duplicated and deleted regions lie exactly between the two segmental duplication regions. These segmental duplications on chromosome 8p23.1 are known to be involved in chromosomal rearrangements because of mutual homology and homology to other genomic regions. Genomic instability mediated by these segmental duplications is generally caused by non-allelic homologous recombination, resulting in deletions, reciprocal duplications, inversions and translocations. Additional analysis of the parental origin of the fragments of this atypical inverted duplication/interstitial deletion shows paternal contribution in the maternal derivate chromosome 8. Combined with the finding that the normal chromosome 8 carries an inversion in 8p23.1 we hypothesize that a double strand break in 8p23.1 of the maternal chromosome was postzygotically repaired with the paternal inverted copy resulting in a duplication, deletion and segmental uniparental disomy, with no particular mediation of the 8p23.1 segmental duplication regions in recombination.


Assuntos
Transtornos Cromossômicos/genética , Deficiência Intelectual/genética , Obesidade/genética , Criança , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Duplicação Cromossômica , Cromossomos Humanos Par 8/genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Obesidade/diagnóstico , Síndrome , Telômero/genética
6.
Clin Biochem ; 48(10-11): 703-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25866400

RESUMO

OBJECTIVE: To report the phenotypes and genetic basis of a novel (A)γδß(0)-thalassemia found in Thai individuals with several forms of thalassemia. DESIGNS AND METHODS: An initial study was done in an adult Thai woman who had hypochromic microcytic red cells with unusually 100% Hb F. Extended study was carried out on her parents and another 17 unrelated individuals with elevated Hb F. Hb analysis was performed by capillary electrophoresis and DNA analysis was done using PCR. A novel diagnostic method based on multiplex PCR assays was developed. RESULTS: DNA analysis of the proband revealed the homozygosity for a novel deletion of 118.3 kb, removing the entire (A)γ, ψß, δ-, ß-globin and five olfactory receptor (OR) genes with an insertion of a 179 bp inverted DNA sequence located behind the OR52A5 gene located downstream and an insertion of 7 orphan nucleotides. Her parents were both carriers of this mutation. Further screening in suspected cases in our series unexpectedly led to identification of an additional 17 cases with this mutation in different genotypes including plain heterozygote, homozygote, compound heterozygote with Hb E, and double heterozygote with several forms of α-thalassemia. Hematological features associated with these genetic interactions are presented. CONCLUSIONS: Haplotype analysis indicated a single origin of this novel deletion-inversion-insertion (A)γδß(0)-thalassemia in the Thai population. Differentiation of this mutation and other high Hb F determinants documented previously could be done by using a developed multiplex PCR assay.


Assuntos
Neurônios Receptores Olfatórios/fisiologia , Fenótipo , Talassemia alfa/genética , Globinas beta/genética , Talassemia beta/genética , Talassemia delta/genética , Adulto , Sequência de Bases , Inversão Cromossômica/genética , Epistasia Genética , Feminino , Deleção de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Insercional , Linhagem , Adulto Jovem , Talassemia alfa/diagnóstico , Talassemia beta/diagnóstico , Talassemia delta/diagnóstico
7.
Neurosci Res ; 93: 158-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25573718

RESUMO

The olfactory system has been well studied in mammals such as mice and rats. However, few studies have focused on characterizing this system in diurnal primates that rely on their sense of smell to a lesser extent due to their ecological environment. In the present study, we determined the histological organization of the olfactory bulb in the common marmoset (Callithrix jacchus). We then constructed 3-dimensional models of the glomeruli of the olfactory bulb, and estimated the number of glomeruli. Olfactory glomeruli are the functional units of olfactory processing, and have been investigated in detail using mice. There are approximately 1800 glomeruli in a mouse hemibulb, and olfactory sensory neurons expressing one selected olfactory receptor converge onto one or two glomeruli. Because mice have about 1000 olfactory receptor genes, it is proposed that the number of glomeruli in mammals is nearly double that of olfactory receptor genes. The common marmoset carries only about 400 intact olfactory receptor genes. The present study revealed that the number of glomeruli in a marmoset hemibulb was approximately 1500-1800. This result suggests that the number of glomeruli is not positively correlated with the number of intact olfactory receptor genes in mammals.


Assuntos
Callithrix/anatomia & histologia , Bulbo Olfatório/anatomia & histologia , Animais , Feminino , Masculino
8.
Biochim Biophys Acta ; 1839(12): 1373-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24859457

RESUMO

Transcriptionally repressive histone lysine methylation is used by eukaryotes to tightly control cell fate. Here we explore the importance of this form of regulation in the control of clustered genes in the genome. Two distinctly regulated gene families with important roles in vertebrates are discussed, namely the Hox genes and olfactory receptor genes. Major recent advances in these two fields are compared and contrasted, with an emphasis on the roles of the two different forms of histone trimethylation. We discuss how this repression may impact both the transcriptional output of these loci and the way higher-order chromatin organization is related to their unique control.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Animais , Regulação para Baixo , Determinismo Genético , Histona Metiltransferases , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Processos Estocásticos
9.
Front Psychol ; 5: 247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24715883

RESUMO

The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA