Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.442
Filtrar
1.
Bioorg Med Chem ; 110: 117814, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38981217

RESUMO

Oligonucleotide therapeutics, particularly antisense oligonucleotides (ASOs), have emerged as promising candidates in drug discovery. However, their effective delivery to the target tissues and cells remains a challenge, necessitating the development of suitable drug delivery technologies for ASOs to enable their practical application. In this study, we synthesized a library of chemically modified dipeptide-ASO conjugates using a recent synthetic method based on the Ugi reaction. We then conducted in vitro screening of this library using luciferase-expressing cell lines to identify ligands capable of enhancing ASO activity. Our findings suggest that N-(4-nitrophenoxycarbonyl)glycine may interact with the thiophosphate moiety of the phosphorothioate-modification in ASO. Through our screening efforts, we identified two ligands that modestly reduced luciferase luminescence in a cell type-selective manner. Furthermore, quantification of luciferase mRNA levels revealed that one of these promising dipeptide-ASO conjugates markedly suppressed luciferase RNA levels through its antisense effect in prostate-derived DU-145 cells compared to the ASOs without ligand modification.

2.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38978695

RESUMO

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

3.
Microrna ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38952162

RESUMO

BACKGROUND: Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharma-cologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors. OBJECTIVE: This review synthesizes in silico, in vitro, and in vivo findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR-22, versus administering pharmacological antagomirs targeting miR-22-3p. METHODS: In silico analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological an-tagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups. RESULTS: Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or "sponge" that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs. CONCLUSIONS: From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmaco-logic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38952267

RESUMO

Irradiation of the major conformation of duplex DNA found in cells (B form) produces cyclobutane pyrimidine dimers (CPDs) from adjacent pyrimidines in a head-to-head orientation (syn) with the C5 substituents in a cis stereochemistry. These CPDs have crucial implications in skin cancer. Irradiation of G-quadruplexes and other non-B DNA conformations in vitro produces, however, CPDs between nonadjacent pyrimidines in nearby loops with syn and head-to-tail orientations (anti) with both cis and trans stereochemistry to yield a mixture of six possible isomers of the T=T dimer. This outcome is further complicated by formation of mixtures of nonadjacent CPDs of C=T, T=C, and C=C, and successful analysis depends on development of specific and sensitive methods. Toward meeting this need, we investigated whether ion mobility mass spectrometry (IMMS) and MS/MS can distinguish the cis,syn and trans,anti T=T CPDs. Ion mobility can afford baseline separation and give relative mobilities that are in accord with predicted cross sections. Complementing this ability to distinguish isomers is MS/MS collisional activation where fragmentation also distinguishes the two isomers and confirms conclusions drawn from ion mobility analysis. The observations offer early support that ion mobility and MS/MS can enable the distinction of DNA photoproduct isomers.

5.
Mol Ther Nucleic Acids ; 35(3): 102237, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38993932

RESUMO

Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.

6.
ChemMedChem ; : e202400472, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957922

RESUMO

Therapeutic oligonucleotides, such as antisense DNA, show promise in treating previously untreatable diseases. However, their applications are still hindered by the poor membrane permeability of naked oligonucleotides. Therefore, it is necessary to develop efficient methods for intracellular oligonucleotide delivery. Previously, our group successfully developed disulfide-based Membrane Permeable Oligonucleotides (MPON), which achieved enhanced cellular uptake and gene silencing effects through an endocytosis-free uptake mechanism.  Herein, we report a new molecular design for the next generation of MPON, called trimer MPON. The trimer MPON consists of a tri-branched backbone, three α-lipoic acid units, and a spacer linker between the oligonucleotides and tri-branched cyclic disulfide unit. We describe the design, synthesis, and functional evaluation of the trimer MPON, offering new insights into the molecular design for efficient oligonucleotide delivery.

7.
Drug Discov Today ; : 104074, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950729

RESUMO

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and small bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.

8.
Biosens Bioelectron ; 262: 116551, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971039

RESUMO

Controllable assembly of DNA nanostructure provides a powerful way for quantitative analysis of various targets including nucleic acid molecules. In this study, we have designed detachable DNA nanostructures at electrochemical sensing interface and constructed a ligation chain reaction (LCR) strategy for amplified detection of miRNA. A three-dimensional DNA triangular prism nanostructure is fabricated to provide suitable molecule recognition environment, which can be further regenerated for additional tests via convenient pH adjustment. Target triggered LCR is highly efficient and specific towards target miRNA. Under optimal experimental conditions, this approach enables ultrasensitive exploration in a wide linear range with a single-base resolution. Moreover, it shows excellent performances for the analysis of cell samples and clinical serum samples.

9.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891955

RESUMO

There is great concern in equine sport over the potential use of pharmaceutical agents capable of editing the genome or modifying the expression of gene products. Synthetic oligonucleotides are short, single-stranded polynucleotides that represent a class of agents capable of modifying gene expression products with a high potential for abuse in horseracing. As these substances are not covered by most routine anti-doping analytical approaches, they represent an entire class of compounds that are not readily detectable. The nucleotide sequence for each oligonucleotide is highly specific, which makes targeted analysis for these agents problematic. Accordingly, we have developed a non-targeted approach to detect the presence of specific product ions that are not naturally present in ribonucleic acids. Briefly, serum samples were extracted using solid-phase extraction with a mixed-mode cartridge following the disruption of protein interactions to isolate the oligonucleotides. Following the elution and concentration steps, chromatographic separation was achieved utilizing reversed-phase liquid chromatography. Following an introduction to a Thermo Q Exactive HF mass spectrometer using electrospray ionization, analytes were detected utilizing a combination of full-scan, parallel reaction monitoring and all ion fragmentation scan modes. The limits of detection were determined along with the accuracy, precision, stability, recovery, and matrix effects using a representative 13mer oligonucleotide. Following method optimization using the 13mer oligonucleotide, the method was applied to successfully detect the presence of specific product ions in three unique oligonucleotide sequences targeting equine-specific transcripts.


Assuntos
Oligonucleotídeos , Animais , Cavalos/sangue , Oligonucleotídeos/sangue , Dopagem Esportivo/prevenção & controle , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Limite de Detecção
10.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891969

RESUMO

The increasing problem of antimicrobial resistance in N. gonorrhoeae necessitates the development of molecular typing schemes that are suitable for rapid and mass screening. The objective of this study was to design and validate a mini-MLST scheme for N. gonorrhoeae based on global pathogen population data. Using sequences of seven housekeeping genes of 21,402 isolates with known MLSTs from the PubMLST database, we identified eighteen informative polymorphisms and obtained mini-MLST nucleotide profiles to predict MLSTs of isolates. We proposed a new MLST grouping system for N. gonorrhoeae based on mini-MLST profiles. Phylogenetic analysis revealed that MLST genogroups are a stable characteristic of the N. gonorrhoeae global population. The proposed grouping system has been shown to bring together isolates with similar antimicrobial susceptibility, as demonstrated by the characteristics of major genogroups. Established MLST prediction algorithms based on nucleotide profiles are now publicly available. The mini-MLST scheme was evaluated using a MLST detection/prediction method based on the original hydrogel DNA microarray. The results confirmed a high predictive ability up to the MLST genogroup. The proposed holistic approach to gonococcal population analysis can be used for the continuous surveillance of known and emerging resistant N. gonorrhoeae isolates.


Assuntos
Gonorreia , Tipagem de Sequências Multilocus , Neisseria gonorrhoeae , Filogenia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/classificação , Tipagem de Sequências Multilocus/métodos , Gonorreia/microbiologia , Gonorreia/diagnóstico , Humanos , Técnicas de Tipagem Bacteriana/métodos
11.
Heart Fail Clin ; 20(3): 343-352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844305

RESUMO

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a relatively prevalent cause of morbidity and mortality. Over the recent years, development of disease-modifying treatments has enabled stabilization of the circulating transthyretin tetramer and suppression of its hepatic production, resulting in a remarkable improvement in survival of patients with ATTR-CM. Second-generation drugs for silencing are currently under investigation in randomized clinical trials. In vivo gene editing of transthyretin has been achieving unanticipated suppression of hepatic production in ATTR-CM. Trials of antibodies inducing the active removal of transthyretin amyloid deposits in the heart are ongoing, and evidence has gathered for exceptional spontaneous regression of ATTR-CM.


Assuntos
Neuropatias Amiloides Familiares , Benzoxazóis , Cardiomiopatias , Pré-Albumina , Humanos , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Benzoxazóis/uso terapêutico , Pré-Albumina/metabolismo , Pré-Albumina/genética
12.
J Chromatogr A ; 1730: 465060, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38861823

RESUMO

Hydrophilic interaction (liquid) chromatography (HILIC) has become the first choice LC mode for the separation of hydrophilic analytes. Numerous studies reported the poor retention time repeatability of HILIC. The problem was often ascribed to slow equilibration and insufficient re-equilibration time to establish the sensitive semi-immobilized water layer at the interface of the polar stationary phase and the bulk mobile phase. In this study, we compare retention time repeatability in HILIC for borosilicate glass and PFA (co-polymer of tetrafluoroethylene and perfluoroalkoxyethylene) solvent bottles. During this study, we observed peak patterns shifting towards higher retention times (for metabolites and peptides) and lower retention times (oligonucleotide sample) with ongoing analysis time when standard borosilicate glass bottles were used as solvent reservoirs. It was hypothesized that release of ions (sodium, potassium, borate, etc.) from the borosilicate glass bottles leads to alterations (thickness and electrostatic screening effects) in the semi-immobilized water layer which is adsorbed to the polar stationary phase surface under acetonitrile-rich eluents in HILIC with concomitant shifts in retention. When PFA solvent bottles were employed instead of borosilicate glass, retention time repeatability was greatly improved and changed from average 8.4 % RSD for the tested metabolites with borosilicate glass bottles to 0.14 % RSD for the PFA solvent bottles (30 injections over 12 h). Similar improvements were observed for peptides and oligonucleotides. This simple solution to the retention time repeatability problem in HILIC might contribute to a better acceptance of HILIC, especially in fields like targeted and untargeted metabolomics, peptide and oligonucleotide analysis.

13.
J Neural Transm (Vienna) ; 131(6): 597-607, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864935

RESUMO

For a special issue, we review studies on the pathogenesis of nigral cell death and the treatment of sporadic Parkinson's disease (sPD) over the past few decades, with a focus on the studies performed by Prof. Mizuno and our group. Prof. Mizuno proposed the initial concept that mitochondrial function may be impaired in sPD. When working at Jichi Medical School, he found a decrease in complex I of the mitochondrial electron transfer complex in the substantia nigra of patients with Parkinson's disease (PD) and MPTP models. After moving to Juntendo University as a professor and chairman, he continued to study the mechanisms of cell death in the substantia nigra of patients with sPD. Under his supervision, I studied the relationships between PD and apoptosis, PD and iron involvement, mitochondrial dysfunction and apoptosis, and PD and neuroinflammation. Moving to Kitasato University, we focused on PD and the cytotoxicity of alpha synuclein (αSyn) as well as brain neuropathology. Eventually, I moved to Osaka University, where I continued working on PD and αSyn projects to promote therapeutic research. In this paper, we present the details of these studies in the following order: past, present, and future.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Animais , Substância Negra/patologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
14.
Methods Mol Biol ; 2832: 67-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869788

RESUMO

Alternative splicing (AS) is an important mechanism contributing to stress-induced regulation of gene expression and proteome diversity. Massive sequencing technologies allow the identification of transcripts generated via stress-responsive AS, potentially important for adaptation to stress conditions. Several bioinformatics tools have been developed to identify differentially expressed alternative splicing events/transcripts from RNA-sequencing results. This chapter describes a detailed protocol for differential alternative splicing analysis using the rMATS tool. In addition, we provide guidelines for validation of the detected splice variants by qRT-PCR based on the obtained output files.


Assuntos
Processamento Alternativo , Biologia Computacional , Estresse Fisiológico , Processamento Alternativo/genética , Estresse Fisiológico/genética , Biologia Computacional/métodos , Software , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perfilação da Expressão Gênica/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38904107

RESUMO

The chemical synthesis of guanosine nucleosides generates both the N9 and N7 regioisomers, which require careful separation to obtain the desired N9 isomer. To preferentially obtain the N9 isomer, a bulky diphenylcarbamoyl (DPC) group can be installed at the O6 position of guanine. However, installation of the DPC group presents a challenging task due to low solubility of the N-acetyl protected guanine. Here we report the usage of commercially available 2-amino-6-chloro purine as a new strategy that offers a more efficient route to the synthesis of the guanine phosphoramidite of threose nucleic acid (TNA).

16.
Mol Pharm ; 21(7): 3471-3484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38872243

RESUMO

Oligonucleotides are short nucleic acids that serve as one of the most promising classes of drug modality. However, attempts to establish a physicochemical evaluation platform of oligonucleotides for acquiring a comprehensive view of their properties have been limited. As the chemical stability and the efficacy as well as the solution properties at a high concentration should be related to their higher-order structure and intra-/intermolecular interactions, their detailed understanding enables effective formulation development. Here, the higher-order structure and the thermodynamic stability of the thrombin-binding aptamer (TBA) and four modified TBAs, which have similar sequences but were expected to have different higher-order structures, were evaluated using ultraviolet spectroscopy (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). Then, the relationship between the higher-order structure and the solution properties including solubility, viscosity, and stability was investigated. The impact of the higher-order structure on the antithrombin activity was also confirmed. The higher-order structure and intra-/intermolecular interactions of the oligonucleotides were affected by types of buffers because of different potassium concentrations, which are crucial for the formation of the G-quadruplex structure. Consequently, solution properties, such as solubility and viscosity, chemical stability, and antithrombin activity, were also influenced. Each instrumental analysis had a complemental role in investigating the higher-order structure of TBA and modified TBAs. The utility of each physicochemical characterization method during the preclinical developmental stages is also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Dicroísmo Circular , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Dicroísmo Circular/métodos , Oligonucleotídeos/química , Varredura Diferencial de Calorimetria/métodos , Viscosidade , Espectroscopia de Ressonância Magnética/métodos , Solubilidade , Termodinâmica , Quadruplex G , Estabilidade de Medicamentos , Humanos
17.
Am J Physiol Cell Physiol ; 327(1): C184-C192, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826137

RESUMO

Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva , Oligonucleotídeos , Inibidores de Proteínas Quinases , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Linhagem Celular Tumoral , Oligonucleotídeos/farmacologia , Apoptose/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Dasatinibe/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
IUBMB Life ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935610

RESUMO

Type 2 diabetes mellitus is a prevalent metabolic disease, posing a considerable threat to public health. Oligonucleotide drugs have proven to be a promising field of therapy for the diseases. In this study, we reported that a herbal small RNA (sRNA), JGL-sRNA-h7 (B34735529, F1439.L002444.A11), could exhibit potent hypoglycemic effects by targeting glucose-6-phosphatase. Oral administration of sphingosine (d18:1)-JGL-sRNA-h7 bencaosomes ameliorated hyperglycemia and diabetic kidney injury better than metformin in db/db mice. Furthermore, glucose tolerance was also improved in sphingosine (d18:1)-JGL-sRNA-h7 bencaosomes-treated beagle dogs. Our study indicates that JGL-sRNA-h7 could be a promising hypoglycemic oligonucleotide drug.

19.
Int J Pharm ; 661: 124390, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936443

RESUMO

In vivo studies investigating the inhalative efficacy of biotherapeutics, such as nucleic acids, usually do not perform an aerosolization step, rather the solution is directly administered into the lungs e.g. intratracheally. In addition, there is currently very little information on the behavior of nucleic acid solutions when subjected to the physical stress of the nebulization process. In this study, the aim was to assess the technical suitability of Locked Nucleic Acids (LNAs), as a model antisense oligonucleotide, towards nebulization using two commercially available nebulizers. A jet nebulizer (Pari LC Plus) and a vibrating mesh nebulizer (Aerogen Solo) were employed and solutions of five different LNAs investigated in terms of their physical and chemical stability to nebulization and the quality of the generated aerosols. The aerosol properties of the Aerogen Solo were mainly influenced by the viscosity of the solutions with the output rate and the droplet size decreasing with increasing viscosity. The Pari LC Plus was less susceptible to viscosity and overall the droplet size was smaller. The LNAs tolerated both nebulization processes and the integrity of the molecules was shown. Chemical stability of the molecules from the Aerogen Solo was confirmed, whereas aerosol generation with the Pari LC Plus jet nebulizer led to a slight increase of phosphodiester groups in a fully phosphorothiolated backbone of the LNAs. Overall, it could be shown that nebulization of different LNAs is possible and inhalation can therefore be considered a potential route of administration.

20.
Neurol Int ; 16(3): 631-642, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921951

RESUMO

Spinal muscular atrophy is a neuromuscular genetic condition associated with progressive muscle weakness and atrophy. Nusinersen is an antisense oligonucleotide therapy approved for the treatment of 5q spinal muscular atrophy in pediatric and adult patients. The objective of this clinical case series is to describe the efficacy and safety of nusinersen in treating spinal muscular atrophy in 20 pediatric and 18 adult patients across six treatment centers in Kuwait. Functional motor assessments (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders, Hammersmith Functional Motor Scale Expanded, and Revised Upper Limb Module) were used to assess changes in motor function following nusinersen treatment. The safety assessment involved clinical monitoring of adverse events. The results demonstrate clinically meaningful or considerable improvement in motor performance for nearly all patients, lasting over 4 years in some cases. A total of 70% of patients in the pediatric cohort and 72% of patients in the adult cohort achieved a clinically meaningful improvement in motor function following nusinersen treatment. Additionally, nusinersen was well-tolerated in both cohorts. These findings add to the growing body of evidence relating to the clinical efficacy and safety of nusinersen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...