Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PeerJ ; 12: e18007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253603

RESUMO

Monitoring of stream water quality is a key element of water resource management worldwide, but methods that are commonly used in temperate habitats may not be appropriate in humid tropical systems. We assessed the influence of four land uses on microbial water quality in 21 streams in the Panama Canal Watershed over a one-year period, using a common culture-based fecal indicator test and 16S rDNA metabarcoding. Each stream was located within one of four land uses: mature forest, secondary forest, silvopasture, and traditional cattle pasture. Culturing detected total coliforms and Escherichia coli across all sites but found no significant differences in concentrations between land uses. However, 16S rDNA metabarcoding revealed variability in the abundance of coliforms across land uses and several genera that can cause false positives in culture-based tests. Our results indicate that culture-based fecal indicator bacteria tests targeting coliforms may be poor indicators of fecal contamination in Neotropical oligotrophic streams and suggest that tests targeting members of the Bacteroidales would provide a more reliable indication of fecal contamination.


Assuntos
Enterobacteriaceae , Monitoramento Ambiental , Fezes , Rios , Microbiologia da Água , Fezes/microbiologia , Rios/microbiologia , Monitoramento Ambiental/métodos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Escherichia coli/isolamento & purificação , Clima Tropical , RNA Ribossômico 16S/genética , Qualidade da Água
3.
Front Microbiol ; 14: 1202266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779711

RESUMO

The exceptionally long and protracted aridity in the Atacama Desert (AD), Chile, provides an extreme, terrestrial ecosystem that is ideal for studying microbial community dynamics under hyperarid conditions. Our aim was to characterize the temporal response of hyperarid soil AD microbial communities to ex situ simulated rainfall (5% g water/g dry soil for 4 weeks) without nutrient amendment. We conducted replicated microcosm experiments with surface soils from two previously well-characterized AD hyperarid locations near Yungay at 1242 and 1609 masl (YUN1242 and YUN1609) with distinct microbial community compositions and average soil relative humidity levels of 21 and 17%, respectively. The bacterial and archaeal response to soil wetting was evaluated by 16S rRNA gene qPCR, and amplicon sequencing. Initial YUN1242 bacterial and archaeal 16S rRNA gene copy numbers were significantly higher than for YUN1609. Over the next 4 weeks, qPCR results showed significant increases in viable bacterial abundance, whereas archaeal abundance decreased. Both communities were dominated by 10 prokaryotic phyla (Actinobacteriota, Proteobacteria, Chloroflexota, Gemmatimonadota, Firmicutes, Bacteroidota, Planctomycetota, Nitrospirota, Cyanobacteriota, and Crenarchaeota) but there were significant site differences in the relative abundances of Gemmatimonadota and Chloroflexota, and specific actinobacterial orders. The response to simulated rainfall was distinct for the two communities. The actinobacterial taxa in the YUN1242 community showed rapid changes while the same taxa in the YUN1609 community remained relatively stable until day 30. Analysis of inferred function of the YUN1242 microbiome response implied an increase in the relative abundance of known spore-forming taxa with the capacity for mixotrophy at the expense of more oligotrophic taxa, whereas the YUN1609 community retained a stable profile of oligotrophic, facultative chemolithoautotrophic and mixotrophic taxa. These results indicate that bacterial communities in extreme hyperarid soils have the capacity for growth in response to simulated rainfall; however, historic variations in long-term hyperaridity exposure produce communities with distinct putative metabolic capacities.

4.
Front Microbiol ; 13: 941897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262328

RESUMO

Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods. Of the parameters measured, ammonium, oxygen, and temperature, in that order, were the main determinants driving the variability in the prokaryotic community structure of the lake. Distinct stratification of Lake Cote occurred (March 2018) and the community diversity was compared to a period of complete mixing (March 2019). The microbial community analysis indicated that stratification significantly altered the bacterial composition in the epi-meta- and hypolimnion. During stratification, the Deltaproteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Euryarchaeota were dominant in the hypolimnion yet largely absent in surface layers. Among these taxa, strict or facultative anaerobic bacteria were likely contributing to the lake nitrogen biogeochemical cycling, consistent with measurements of inorganic nitrogen measurements and microbial functional abundance predictions. In general, during both sampling events, a higher abundance of Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Cyanobacteria was found in the oxygenated layers. Lake Cote had a unique bacterial diversity, with 80% of Amplicon Sequence Variant (ASV) recovered similar to unclassified/uncultured strains and exhibits archetypal shallow lake physicochemical but not microbial fluctuations worthy of further investigation. This study provides an example of lake hydrodynamics impacts to microbial community and their function in Central American lakes with implications for other shallow, upland, and oligotrophic lake systems.

5.
Front Microbiol ; 13: 930302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212823

RESUMO

Microbial communities inhabiting caves in quartz-rich rocks are still underexplored, despite their possible role in the silica cycle. The world's longest orthoquartzite cave, Imawarì Yeuta, represents a perfect arena for the investigation of the interactions between microorganisms and silica in non-thermal environments due to the presence of extraordinary amounts of amorphous silica speleothems of different kinds. In this work, the microbial diversity of Imawarì Yeuta was dissected by analyzing nineteen samples collected from different locations representative of different silica amorphization phases and types of samples. Specifically, we investigated the major ecological patterns in cave biodiversity, specific taxa enrichment, and the main ecological clusters through co-occurrence network analysis. Water content greatly contributed to the microbial communities' composition and structures in the cave leading to the sample clustering into three groups DRY, WET, and WATER. Each of these groups was enriched in members of Actinobacteriota, Acidobacteriota, and Gammaproteobacteria, respectively. Alpha diversity analysis showed the highest value of diversity and richness for the WET samples, while the DRY group had the lowest. This was accompanied by the presence of correlation patterns including either orders belonging to various phyla from WET samples or orders belonging to the Actinobacteriota and Firmicutes phyla from DRY group samples. The phylogenetic analysis of the dominant species in WET and DRY samples showed that Acidobacteriota and Actinobacteriota strains were affiliated with uncultured bacteria retrieved from various oligotrophic and silica/quartz-rich environments, not only associated with subterranean sites. Our results suggest that the water content greatly contributes to shaping the microbial diversity within a subterranean quartzite environment. Further, the phylogenetic affiliation between Imawarì Yeuta dominant microbes and reference strains retrieved from both surface and subsurface silica- and/or CO2/CO-rich environments, underlines the selective pressure applied by quartz as rock substrate. Oligotrophy probably in association with the geochemistry of silica/quartz low pH buffering activity and alternative energy sources led to the colonization of specific silica-associated microorganisms. This study provides clues for a better comprehension of the poorly known microbial life in subsurface and surface quartz-dominated environments.

6.
Astrobiology ; 22(3): 293-312, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694925

RESUMO

Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.


Assuntos
Metagenoma , Microbiota , Brasil , Cavernas/microbiologia , Metagenômica , Microbiota/genética , Filogenia
7.
Microb Ecol ; 81(3): 563-578, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32829441

RESUMO

Natural ponds in the Brazilian Cerrado harbor high biodiversity but are still poorly studied, especially their microbial assemblage. The characterization of the microbial community in aquatic environments is fundamental for understanding its functioning, particularly under the increasing pressure posed by land conversion and climate change. Here, we aim to characterize the structure (abundance, richness, and diversity) and composition of the Bacteria and Archaea in the sediment of two natural ponds belonging to different basins that primarily differ in size and depth in the Cerrado. Sediment samples were collected in the dry and rainy seasons and the transition periods between both. The structure and composition of Bacteria and Archaea were assessed by 16S rRNA gene pyrosequencing. We identified 45 bacterial and four archaeal groups. Proteobacteria and Acidobacteria dominated the bacterial community, while Euryarchaeota and Thaumarchaeota dominated the archaeal community. Seasonal fluctuations in the relative abundance of microbial taxa were observed, but pond characteristics were more determinant to community composition differences. Microbial communities are highly diverse, and local variability could partially explain the microbial structure's main differences. Functional predictions based in 16S rRNA gene accessed with Tax4Fun indicated an enriched abundance of predicted methane metabolism in the deeper pond, where higher abundance of methanogenic archaea Methanocella, Methanosaeta, and Methanomicrobiaceae was detected. Our dataset encompasses the more comprehensive survey of prokaryotic microbes in Cerrado's aquatic environments. Here, we present basic and essential information about composition and diversity, for initial insights into the ecology of Bacteria and Archaea in these environments.


Assuntos
Archaea , Lagoas , Archaea/genética , Bactérias/genética , Biodiversidade , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S/genética
8.
Acta amaz. ; 49(4): 316-323, Oct.-Dec. 2019. ilus, mapas, tab
Artigo em Inglês | VETINDEX | ID: vti-24171

RESUMO

Overexploitation is one of the main causes of biodiversity loss and local extinction. In the Brazilian Amazon, the intensive use of high-value timber species is leading to a decline in their populations. When in decline, these species can be replaced by less valuable and more common ones that are more feasible to exploit. We conducted interviews with residents of two communities in a sustainable development reserve in central Amazonia, and used free lists and the cognitive salience index (S) to assess the perceptions of residents regarding the occurrence and purpose of timber exploitation, and to identify possible endangered species in white-sand and terra-firme forests. In addition, to infer possible consequences of logging, we assessed the current population status of timber species cited by residents in forest-plot inventories carried out within the reserve. S-index values and interviewee reports suggested an intensive use of terra-firme timber species and an apparently recent increase in the exploitation of white-sand species, which did not use to be exploited because of their relatively low commercial value. The inventories showed that the white-sand timber species have high relative densities and low S values in contrast to the terra-firme species, which mostly have low relative densities and high S values. Our results highlight the need to identify and monitor relevant timber species in both terra-firme and white-sand forests, and to increase the involvement of the local community in the development of logging management practices.(AU)


A super-exploração madeireira é uma das principais causas de perda da biodiversidade e extinções locais. Na Amazônia brasileira o uso intensivo focado em poucas espécies tem levado à redução de suas populações e à substituição destas espécies, consideradas “nobres” pelo mercado madeireiro, por espécies “menos nobres” com populações ainda viáveis para exploração. Nós realizamos entrevistas com moradores de duas comunidades em uma reserva de desenvolvimento sustentável na Amazônia Central, e usamos listas livres e o Índice de Saliência Cognitiva (S) para elucidar percepções dos moradores sobre a exploração madeireira local e identificar possíveis espécies em risco em florestas de campinarana e terra-firme. Além disso, para inferir possíveis consequências da atividade madeireira, avaliamos o atual status populacional das espécies madeireiras citadas pelos moradores em inventários florestais realizados dentro da reserva. Os resultados do S e os relatos dos moradores sugerem o uso intensivo de espécies madeireiras de terra-firme e um aumento aparentemente recente da exploração de espécies de campinarana, antes desprezadas pelo baixo valor comercial. Os inventários mostram que espécies madeireiras de campinarana têm altas densidades relativas e baixos valores de S, em contraste com espécies de terra-firme, que, em sua maioria, apresentam baixas densidades relativas e altos valores de S. Nossos resultados ressaltam a necessidade de identificar e monitorar as populações de espécies madeireiras importantes, tanto em florestas de terra-firme quanto em campinaranas, e de involver os comunitários no desenvolvimento de políticas de manejo da exploração madeireira na reserva.(AU)


Assuntos
Indústria da Madeira/análise , Indústria da Madeira/prevenção & controle , Madeira/classificação , Florestas , Ecossistema Amazônico
9.
Acta amaz ; Acta amaz;49(4): 316-323, out. - dez. 2019.
Artigo em Inglês | LILACS | ID: biblio-1118962

RESUMO

Overexploitation is one of the main causes of biodiversity loss and local extinction. In the Brazilian Amazon, the intensive use of high-value timber species is leading to a decline in their populations. When in decline, these species can be replaced by less valuable and more common ones that are more feasible to exploit. We conducted interviews with residents of two communities in a sustainable development reserve in central Amazonia, and used free lists and the cognitive salience index (S) to assess the perceptions of residents regarding the occurrence and purpose of timber exploitation, and to identify possible endangered species in white-sand and terra-firme forests. In addition, to infer possible consequences of logging, we assessed the current population status of timber species cited by residents in forest-plot inventories carried out within the reserve. S-index values and interviewee reports suggested an intensive use of terra-firme timber species and an apparently recent increase in the exploitation of white-sand species, which did not use to be exploited because of their relatively low commercial value. The inventories showed that the white-sand timber species have high relative densities and low S values in contrast to the terra-firme species, which mostly have low relative densities and high S values. Our results highlight the need to identify and monitor relevant timber species in both terra-firme and white-sand forests, and to increase the involvement of the local community in the development of logging management practices. (AU)


Assuntos
Indústria da Madeira/efeitos adversos , Ecossistema Amazônico , Exploração de Recursos Naturais , Floresta Úmida
10.
Acta biol. colomb ; 24(2)May-ago. 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1533342

RESUMO

Se registró por primera vez la presencia del dinoflagelado atecado Pronoctiluca spinifera (Lohman) (Schiller, 1933) en el Parque Nacional Natural Corales de Profundidad-PNNCPR del Caribe colombiano. Fueron hallados a uno y 40 m de profundidad, tres ejemplares con tamaño promedio de 54,84 µm de largo y 10,29 (m de ancho; de contorno fusiforme con dos proyecciones, una en forma de tentáculo (13,56 µm) y otra puntiaguda. Los sitios de muestreo se caracterizaron por temperaturas entre 27,7 y 30,3 °C; salinidad entre 35,6 y 36,4 y clorofila a entre 0,0801 y 0,1741 mg/m3; valores típicos de ambientes oceánicos. Con el presente trabajo se amplía la distribución de P. spinifera hallándose por primera vez en el mar Caribe Colombiano en el PNNCPR.


The presence of the unarmored dinoflagellate Pronoctiluca spinifera (Lohman) Schiller (1933) was recorded for the first time in the Parque Nacional Natural Corales de Profundidad-PNNCPR, in the Colombian Caribbean. Three specimens with an average size of 54.84 µm long and 10.29 wide were found at one and 40 m depth; of the fusiform outline with two projections, one in the form of the tentacle (13.56 pm) and another pointed. The sampling sites were characterized by temperatures between 27.7 and 30.3 °C; salinity between 35.6 and 36.4 and Chlorophyll a between 0.0801 and 0.1741 mg / m3; typical values of oceanic environments. With this paper, the distribution of P. spinifera is extended, being found for the first time in the Colombian Caribbean Sea in the PNNCPR.

11.
Heliyon ; 5(10): e02492, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32083196

RESUMO

Increased pollution and degradation of water resources and their associated ecosystems has stimulated the development of tools and methodologies to characterize, estimate, predict, and reverse the environmental impact of anthropic effects on water bodies. The Secondary Water Quality Standards (NSCA) adopted in Chile have incorporated the use of bioindicators complementary to physicochemical analyses, in order to determine the ecological condition of lotic and lentic environments. Our research used the "Lake Biotic Index" (LBI) to establish the ecological condition of Lake Rupanco using benthic macroinvertebrates. The results indicated an Oligo-Eubiotic condition for this lake given the high concentration of oxygen and low organic matter content in sediments, in addition to low biogenic potential and good taxa preservation in both the autumn and spring surveys. Features of the ecological condition obtained through the application of the LBI (benthic subsystem) conform to the results of physicochemical and microalgae analyses undertaken previously in Lake Rupanco (pelagic subsystem). Based on these results, we support application of the LBI index as a complementary tool for the integrated management of lentic ecosystems.

12.
PeerJ ; 6: e5200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018858

RESUMO

Mite-fungal interactions play a key role in structuring core ecosystem processes such as nutrient dynamics. Despite their ecological relevance, these cross-kingdom interactions remain poorly understood particularly in extreme environments. Herein, we investigated feeding preferences of a novel genetic lineage of aquatic oribatids obtained from an oligotrophic freshwater system in the Cuatro Ciénegas Basin (CCB) within the Chihuahuan Desert, Mexico. During in vitro diet preference bioassays, transient aquatic microfungi (Aspergillus niger, Talaromyces sp., and Pleosporales sp.) recovered from the same mesocosm samples were offered individually and simultaneously to mites. Gut content was analyzed using classic plating and culture-independent direct PCR (focusing on the fungal barcoding region) methods. Our results indicated that oribatids fed on all tested fungal isolates, yet the profusely developing A. niger was preferentially consumed with all fungal components being digested. This feeding habit is particularly interesting since A. niger has been reported as an unsuitable dietary element for population growth, being consistently avoided by mites in previous laboratory experiments. It is possible that our mites from the CCB have adapted to exploit available resources within this oligotrophic site. This work confirms the trophic relationship between microfungi and mites, two rarely investigated major components of the microbial community, shedding light on the niche dynamics under low-nutrient conditions.

13.
Front Microbiol ; 9: 357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556224

RESUMO

Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others) affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity). We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively) and the major fraction corresponded to Anoxygenic Phototrophs (AP) represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes.

14.
Acta amaz. ; 48(1): 46-56, jan.-mar. 2018. mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17923

RESUMO

The Amazonian white-sand vegetation presents a set of unique features, such as the dominance of a few species, high endemism and low species richness, which differentiate it from other Amazonian forests. Soil parameters have long been recognized as the main drivers of white-sand vegetation (WSV) characteristics. However, how they influence the composition, richness and structure of this vegetation type is still poorly understood. In this study we investigated the variation in floristic composition between patches and the soil-vegetation relations in three central Amazonian WSV patches. We tested whether slight differences in soil properties are linked with differences in floristic composition, species richness and forest structure in adjacent patches. In each patch three plots of 50 x 50 m were sampled (a total of 2.25 ha). Soil samples were collected for each plot. The sampling cutoff for arboreal individuals was DBH ≥ 5 cm. We sampled a total of 3956 individuals belonging to 40 families and 140 species. In each patch only a few species were dominant, but the dominant species varied among patches. Differences among patches were significant, but plots in the same patch tended to have similar species composition. The variable sum of bases (SB) was directly related to species composition, however, species richness and forest structure were not related to soil parameters. Even small variations in soil parameters can change species composition in WSV, although these variations do not necessarily influence the richness and other structural parameters.(AU)


As campinaranas amazônicas apresentam uma série de características únicas, como a dominância de poucas espécies, alto grau de endemismos e baixa riqueza de espécies, que as diferenciam de outras formações florestais amazônicas. Parâmetros edáficos têm sido apontados como os principais responsáveis pelas características das campinaranas. Contudo, como estes parâmetros influenciam a composição, riqueza e estrutura deste tipo de vegetação ainda é pouco entendido. Neste estudo investigamos a variação estrutural, a composição florística e a relação solo-vegetação em três áreas de campinarana na Amazônia central, com intuito de testar se pequenas diferenças nos parâmetros edáficos do solo estão relacionados com diferenças na composição, riqueza e estrutura do componente arbóreo em áreas de campinarana adjacentes. Em cada área foram amostradas três parcelas de 50 x 50 m (totalizando 2.25 ha), com o critério de inclusão para os indivíduos de DAP ≥ 5 cm. Amostras de solo foram coletadas em cada parcela. O número total de indivíduos amostrados foi 3956, pertencendo a 40 famílias e 140 espécies. Em cada área poucas espécies foram dominantes, mas estas variaram entre as áreas. Diferenças entre as áreas foram significativas, porém parcelas da mesma área tenderam a ter composição florística similar. A variável soma de bases (SB) foi diretamente relacionada à composição de espécies; contudo, riqueza de espécies e estrutura florestal não foram relacionadas a nenhum dos parâmetros do solo amostrados. Concluimos que mesmo pequenas variações nos parâmetros edáficos do solo podem mudar a composição de espécies em campinaranas, embora esta variação não necessariamente influencie a riqueza e outros parâmetros estruturais da vegetação.(AU)


Assuntos
Flores/genética , Biodiversidade , Ecossistema Amazônico , Características do Solo/análise
15.
Acta amaz ; Acta amaz;48(1): 46-56, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-885985

RESUMO

ABSTRACT The Amazonian white-sand vegetation presents a set of unique features, such as the dominance of a few species, high endemism and low species richness, which differentiate it from other Amazonian forests. Soil parameters have long been recognized as the main drivers of white-sand vegetation (WSV) characteristics. However, how they influence the composition, richness and structure of this vegetation type is still poorly understood. In this study we investigated the variation in floristic composition between patches and the soil-vegetation relations in three central Amazonian WSV patches. We tested whether slight differences in soil properties are linked with differences in floristic composition, species richness and forest structure in adjacent patches. In each patch three plots of 50 x 50 m were sampled (a total of 2.25 ha). Soil samples were collected for each plot. The sampling cutoff for arboreal individuals was DBH ≥ 5 cm. We sampled a total of 3956 individuals belonging to 40 families and 140 species. In each patch only a few species were dominant, but the dominant species varied among patches. Differences among patches were significant, but plots in the same patch tended to have similar species composition. The variable sum of bases (SB) was directly related to species composition, however, species richness and forest structure were not related to soil parameters. Even small variations in soil parameters can change species composition in WSV, although these variations do not necessarily influence the richness and other structural parameters.


RESUMO As campinaranas amazônicas apresentam uma série de características únicas, como a dominância de poucas espécies, alto grau de endemismos e baixa riqueza de espécies, que as diferenciam de outras formações florestais amazônicas. Parâmetros edáficos têm sido apontados como os principais responsáveis pelas características das campinaranas. Contudo, como estes parâmetros influenciam a composição, riqueza e estrutura deste tipo de vegetação ainda é pouco entendido. Neste estudo investigamos a variação estrutural, a composição florística e a relação solo-vegetação em três áreas de campinarana na Amazônia central, com intuito de testar se pequenas diferenças nos parâmetros edáficos do solo estão relacionados com diferenças na composição, riqueza e estrutura do componente arbóreo em áreas de campinarana adjacentes. Em cada área foram amostradas três parcelas de 50 x 50 m (totalizando 2.25 ha), com o critério de inclusão para os indivíduos de DAP ≥ 5 cm. Amostras de solo foram coletadas em cada parcela. O número total de indivíduos amostrados foi 3956, pertencendo a 40 famílias e 140 espécies. Em cada área poucas espécies foram dominantes, mas estas variaram entre as áreas. Diferenças entre as áreas foram significativas, porém parcelas da mesma área tenderam a ter composição florística similar. A variável soma de bases (SB) foi diretamente relacionada à composição de espécies; contudo, riqueza de espécies e estrutura florestal não foram relacionadas a nenhum dos parâmetros do solo amostrados. Concluimos que mesmo pequenas variações nos parâmetros edáficos do solo podem mudar a composição de espécies em campinaranas, embora esta variação não necessariamente influencie a riqueza e outros parâmetros estruturais da vegetação.


Assuntos
Predomínio Social
16.
Electron. j. biotechnol ; Electron. j. biotechnol;31: 48-56, Jan. 2018. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1022268

RESUMO

Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.


Assuntos
Bactérias , Biotecnologia , Biodiversidade , Microbiota
17.
Chemosphere ; 166: 163-173, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27697704

RESUMO

Despite located far from point sources of Hg pollution, high concentrations were recorded in plankton from the deep oligotrophic Lake Nahuel Huapi, located in North Patagonia. Native and introduced top predator fish with differing feeding habits are a valuable economic resource to the region. Hence, Hg and Se trophic interactions and pathways to these fish were assessed in the food web of this lake at three sites, using stable nitrogen and carbon isotopes. As expected based on the high THg in plankton, mercury did not biomagnify in the food web of Lake Nahuel Huapi, as most of the THg in plankton is in the inorganic form. As was observed in other aquatic systems, Se did not biomagnify either. When trophic pathways to top predator fish were analyzed, they showed that THg biomagnified in the food chains of native fish but biodiluted in the food chains of introduced salmonids. A more benthic diet, typical of native fish, resulted in higher [THg] bioaccumulation than a more pelagic or mixed diet, as in the case of introduced fish. Se:THg molar ratios were higher than 1 in all the fish species, indicating that Se might be offering a natural protection against Hg toxicity.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Lagos/química , Mercúrio/análise , Selênio/análise , Poluentes Químicos da Água/análise , Animais , Argentina , Isótopos de Carbono/química , Peixes , Mercúrio/química , Isótopos de Nitrogênio/química , Plâncton , Selênio/química , Poluentes Químicos da Água/química
18.
Microb Ecol ; 72(2): 324-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27138047

RESUMO

Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.


Assuntos
Amônia/análise , Metais Pesados/análise , Mineração , Filogenia , Raízes de Plantas/microbiologia , Serratia liquefaciens/classificação , Biofilmes , DNA Bacteriano/genética , Genes Bacterianos , Variação Genética , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/análise , Metagenômica , México , Testes de Sensibilidade Microbiana , Fixação de Nitrogênio , RNA Ribossômico 16S/genética , Rizosfera , Serratia liquefaciens/genética , Serratia liquefaciens/isolamento & purificação , Microbiologia do Solo , Estresse Fisiológico
19.
Mar Pollut Bull ; 101(1): 366-369, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26478456

RESUMO

Mercury (Hg) and selenium (Se) concentrations were evaluated in a planktivorous fish and four size classes of organisms (FSCO), collected at an oligotrophic bay in the Southeastern Brazilian coast. No significant spatial differences between Hg and Se were found in the FSCO within the five sampling points in the bay. Hg and Se concentrations increased with successive increases in the size class of the analyzed plankton, i.e. approximately 3-and 2-fold, respectively, from microplankton to macroplankton. Hg and Se biomagnified throughout the planktonic food web. The smallest size class of organism, seston, composed of both biotic and abiotic portions, and fish showed the highest Hg concentrations. This indicates that Hg is not biomagnifying in the base of the bay food web. Selenium concentrations in fish were approximately 5.9 times higher than those in seston. Hg and Se concentrations in fish were approximately 3.5 and 14.6 times higher than those found in the plankton, respectively.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Cadeia Alimentar , Mercúrio/análise , Plâncton/química , Selênio/análise , Poluentes Químicos da Água/análise , Animais , Brasil , Mercúrio/farmacocinética , Selênio/farmacocinética , Clima Tropical , Poluentes Químicos da Água/farmacocinética
20.
Oecologia ; 179(3): 863-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183835

RESUMO

Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.


Assuntos
Carbono/metabolismo , Ecossistema , Cadeia Alimentar , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Belize , Biomassa , Carbono/análise , Invertebrados/fisiologia , Nitrogênio/análise , Fósforo/análise , Árvores/fisiologia , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA