Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 91: 306-314, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31121291

RESUMO

The flagellum is a complex surface structure necessary for a number of activities including motility, chemotaxis, biofilm formation and host attachment. Flagellin, the primary structural protein making up the flagellum, is an abundant and potent activator of innate and adaptive immunity and therefore expression of flagellin during infection could be deleterious to the infection process due to flagellin-mediated host recognition. Here, we use quantitative RT-PCR to demonstrate that expression of the flagellin locus fliC is repressed during the course of infection and subsequently up-regulated upon host mortality in a motile strain of Yersinia ruckeri. The kinetics of fliC repression during the infection process is relatively slow as full repression occurs 7-days after the initiation of infection and after approximately 3-logs of bacterial growth in vivo. These results suggests that Y. ruckeri possesses a regulatory system capable of sensing host and modulating the expression of motility in response. Examination of the master flagellar operon (flhDC) promoter region for evidence of transcriptional regulation and regulatory binding sites revealed potential interaction with the Rcs pathway through an Rcs(A)B Box. Deletion of rcsB (ΔrcsB) by marker-exchange mutagenesis resulted in overproduction of flagellin and unregulated motility, showing that the Rcs pathway negatively regulates biosynthesis of the flagellar apparatus. Experimental challenge with ΔrcsB and ΔrcsBΔfliC1ΔfliC2 mutants revealed that mutation of the Rcs pathway results in virulence attenuation which is dependent on presence of the flagellin gene. These results suggest that the inappropriate expression of flagellin during infection triggers host recognition and thus immune stimulation resulting in attenuation of virulence. In addition, RNAseq analyses of the ΔrcsB mutant strain verified the role of this gene as a negative regulator of the flagellar motility system and identified several additional genes regulated by the Rcs pathway.


Assuntos
Proteínas de Bactérias/genética , Flagelos/fisiologia , Yersinia ruckeri/fisiologia , Yersinia ruckeri/patogenicidade , Proteínas de Bactérias/metabolismo , Flagelina/genética , Flagelina/metabolismo , Virulência/genética , Yersinia ruckeri/genética
2.
J Appl Microbiol ; 122(3): 578-588, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27981729

RESUMO

AIMS: To investigate the function of the master flagellar operon flhDC in the fish pathogen Yersinia ruckeri and compare the effect of a constructed flhD mutation to a naturally occurring fliR mutation causing loss-of-motility in emergent biotype 2 (BT2) strains. METHODS AND RESULTS: Yersinia ruckeri flhD and fliR mutants were constructed in a motile strain. Both mutations caused loss-of-motility, ablation of flagellin synthesis and phospholipase secretion, similar to naturally occurring BT2 strains. Transcriptome analysis confirmed flhDC regulation of flagellar, chemotaxis and phospholipase loci as well as other genes of diverse function. The flhD mutation confers a competitive advantage within the fish host when compared with its parent strain, while this advantage was not seen with the naturally occurring fliR mutation. CONCLUSIONS: An intact flhD is necessary for expression of the flagellar secretion system as well as other diverse loci, consistent with a role for flhD as a pleiotropic regulator. The maintenance of the flhD locus in Y. ruckeri strains suggests its importance for aspects of Y. ruckeri biology other than virulence, since the flhD mutation conferred a competitive advantage during experimental challenge of rainbow trout. SIGNIFICANCE AND IMPACT OF THE STUDY: Yersinia ruckeri is the causative agent of enteric red mouth disease, an invasive septicaemia that affects farmed salmonid fish species. Disease outbreaks can cause severe economic losses in aquaculture. BT2 variants, which have independently emerged worldwide, are an increasing threat to farmed fish production. Knowledge of mechanisms involved in virulence, conserved functions and gene regulation among strains may be exploited for the development of novel disease control strategies to prevent pathogen growth or virulence phenotypes within aquaculture.


Assuntos
Doenças dos Peixes/microbiologia , Óperon/fisiologia , Yersinia ruckeri/patogenicidade , Animais , Aquicultura , Flagelos/fisiologia , Regulação da Expressão Gênica , Oncorhynchus mykiss/microbiologia , Transcriptoma , Virulência , Yersiniose/microbiologia
3.
Braz. j. biol ; 76(4): 1021-1028, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828095

RESUMO

Abstract The phosphorus and nitrogen discharge via effluent of intensive trout farming system was quantified through the use of environmental indicators. The nutrient loads, the mass balance, the estimated amount of nutrients in feed and the amount of nutrients converted in fish biomass were calculated based on the concentrations of phosphorus (P) and nitrogen (N) in the feed and in the water. Of the offered feed, 24.75 kg were available as P and 99.00 kg as N, of these, 9.32 kg P (38%) and 29.12 kg N (25%) were converted into fish biomass and 15.43 kg P (62%) and 69.88 kg N (75%) were exported via effluent. The loads and the mass balance show the excessive discharge of nutrients via effluent, corroborated by the feed conversion ratio (2.12:1) due to the low efficiency of feed utilization, therefore, it is proposed the use of this zootechnical parameter as environmental indicator. In addition, feed management practices are not adequate, highlighting the low frequency of feeding during the day, excessive amount and low quality of feed offered. These results demonstrate the need for adequate feed management and the need for careful monitoring of effluent.


Resumo A descarga de fósforo e nitrogênio via efluente do sistema intensivo de truticultura foi quantificada através da utilização de indicadores ambientais. As cargas de nutrientes, o balanço de massa, a quantidade estimada de nutrientes na ração e a quantidade de nutrientes convertidos em biomassa de peixes foram calculados com base nas concentrações de fósforo (P) e nitrogênio (N) na ração e na água. Da ração oferecida, 24,75 kg estavam disponíveis como P e 99,00 kg como N, destes, 9,32 kg de P (38%) e 29,12 kg de N (25%) foram convertidos em biomassa de peixe e 15,43 kg P (62%) e 69,88 kg N (75%) foram exportados via efluente. As cargas e o balanço de massa mostram a descarga excessiva de nutrientes via efluente, corroborado pela taxa de conversão alimentar (2,12:1), devido à baixa eficiência na utilização da ração, portanto, propõe-se a utilização deste parâmetro zootécnico como indicador ambiental. Além disso, as práticas de manejo alimentar não são adequadas, destacando a baixa frequência de alimentação durante o dia, quantidade excessiva e baixa qualidade da alimentação ofertada. Esses resultados demonstram a necessidade de manejo alimentar adequado e de monitoramento do efluente.


Assuntos
Animais , Fósforo/análise , Oncorhynchus mykiss/crescimento & desenvolvimento , Pesqueiros , Água Doce/química , Ração Animal/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , Brasil , Biomassa
4.
Mar Biotechnol (NY) ; 17(6): 820-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307018

RESUMO

Probiotics represent an alternative to chemotherapy and vaccination to control fish diseases, including lactococcosis caused by Lactococcus garvieae. The aims of this study were (i) to determine the in vitro probiotic properties of three bacteriocinogenic Lactococcus lactis subsp. cremoris of aquatic origin, (ii) to evaluate in vivo the ability of L. cremoris WA2-67 to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against infection by L. garvieae, and (iii) to demonstrate the role of nisin Z (NisZ) production as an anti-infective mechanism. The three L. cremoris strains survived in freshwater at 18 °C for 7 days, withstood exposure to pH 3.0 and 10 % (v/v) rainbow trout bile, and showed different cell surface hydrophobicity (37.93-58.52 %). The wild-type NisZ-producer L. cremoris WA2-67 and its non-bacteriocinogenic mutant L. cremoris WA2-67 ∆nisZ were administered orally (10(6) CFU/g) to rainbow trout for 21 days and, subsequently, fish were challenged with L. garvieae CLG4 by the cohabitation method. The fish fed with the bacteriocinogenic strain L. cremoris WA2-67 reduced significantly (p < 0.01) the mortality (20 %) compared to the fish treated with its non-bacteriocinogenic knockout isogenic mutant (50 %) and the control (72.5 %). We demonstrated the effectiveness of L. cremoris WA2-67 to protect rainbow trout against infection with the invasive pathogen L. garvieae and the relevance of NisZ production as an anti-infective mechanism. This is the first report demonstrating the effective in vivo role of LAB bacteriocin (NisZ) production as a mechanism to protect fish against bacterial infection. Our results suggest that the wild-type NisZ-producer strain L. cremoris WA2-67 could be used in fish farming to prevent lactococcosis in rainbow trout.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus lactis/metabolismo , Nisina/análogos & derivados , Oncorhynchus mykiss/microbiologia , Probióticos/uso terapêutico , Animais , Doenças dos Peixes/mortalidade , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Positivas/mortalidade , Infecções por Bactérias Gram-Positivas/prevenção & controle , Lactococcus , Nisina/biossíntese , Nisina/farmacologia , Oncorhynchus mykiss/fisiologia
5.
Anaerobe ; 32: 7-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25464142

RESUMO

This work reports the isolation and taxonomic identification of the cultivable total microbiota (TM) and Lactic Acid Bacteria (LAB) from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment from selected stages of the life-cycle, and the evaluation of the LAB antimicrobial activity against the main fish pathogens. TM and LAB isolates were randomly selected and identified by 16S rRNA and/or superoxide dismutase gene sequencing. Although a great diversity in the TM was observed, Enterobacteriaceae and Aeromonadaceae were clearly prevalent, while the genus Lactococcus was the predominant LAB. From a total of 1620 randomly selected LAB, 1159 isolates (71.5%) showed antimicrobial activity. From these, 248 isolates (21.4%) selected for their activity against, at least, four fish pathogens, were taxonomically identified, being Lactococcus lactis the most common species (164 isolates, 66.1%). Interestingly, 88 isolates (35.5%), including 55 L. lactis isolates, exerted activity against four strains of the rainbow trout pathogen Lactococcus garvieae. Our results demonstrate that rainbow trout and rearing environment are potential sources for the isolation of LAB, mainly lactococci, active against L. garvieae and other fish pathogens. Moreover, this is the first study describing the cultivable TM and LAB from rainbow trout intestine and rearing environment along the fish life-cycle. The host-derived LAB active against fish pathogens comprise potential candidates as probiotics in rainbow trout farming as an alternative or complementary strategy to antibiotics and vaccines for disease prevention.


Assuntos
Antibiose , Peixes/microbiologia , Interações Hospedeiro-Patógeno , Microbiota , Animais , Código de Barras de DNA Taxonômico , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/metabolismo , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...