RESUMO
Neosporosis is one of the major causes of abortion in cattle, and it is responsible for significant economic losses in those animals. Thus, this study aimed to evaluate indirect ELISA using subcellular fractions of Neospora caninum obtained via sucrose gradient separation. Eighty-five sera from dairy cattle previously tested using indirect immunofluorescence assay (IFA) were used. Three distinct bands were separated at 1.0 M, 1.4 M, 1.6 M, and the pellet at 1.8 M, which were identified as fractions one (F1), two (F2), three (F3), and four (F4), respectively. These fractions showed parasite membranes in the F1, rhoptry and conoids in the F2, mitochondria in the F3, and tachyzoite ghosts remain in F4. Indirect ELISAs for IgM, and IgG were performed. Additionally, sensitivity, specificity, and kappa values were defined considering the IFA as the gold standard. The highest and lowest specificities were observed for F1 (76 %) and F3 (16 %), respectively. F2 and F4 showed the highest sensitivity (93.3 %), kappa agreement (0.46), and Negative Preventive Value (NPV) (73 %) respectively. It was possible to standardize indirect ELISAs using whole soluble antigen and subcellular fractions of N. caninum, and F2 and F4 showed higher sensitivity (93.3 %), kappa (0.41), and NPV values (75 %) than F1, and F3, which could be used for epidemiology studies such as screening.
RESUMO
RNA-binding proteins (RBPs) can undergo phase separation and form condensates, processes that, in turn, can be critical for their functionality. In a recent study, Huang, Ellis, and colleagues show that cellular stress can trigger transient alterations in nuclear TAR DNA-binding protein 43 (TDP-43), leading to changes crucial for proper neuronal function. These findings have implications for understanding neurological TDP-43 proteinopathies.
RESUMO
In this Inaugural Article the author briefly revises its scientific career and how he starts to work with parasitic protozoa. Emphasis is given to his contribution to topics such as a) the structural organization of the surface of protozoa using freeze-fracture and deep-etching; b) the cytoskeleton of protozoa, especially structures such as the subpellicular microtubules of trypanosomatids, the conoid of Toxoplasma gondii, microtubules and inner membrane complex of this protozoan, and the costa of Tritrichomonas foetus; c) the flagellulm of trypanosomatids, that in addition to the axoneme contains a complex network of filaments that constitute the paraflagellar rod; d) special organelles such as the acidocalcisome, hydrogenosome, and glycosome; and e) the highly polarized endocytic pathway found in epimastigote forms of Trypanosoma cruzi.
Assuntos
Eucariotos , Microtúbulos , Masculino , Humanos , Citoesqueleto , Microscopia Eletrônica de Varredura , AxonemaRESUMO
Over the past few years, there has been a focus on proteins that create separate liquid phases in the intracellular liquid environment, known as membraneless organelles (MLOs). These organelles allow for the spatiotemporal associations of macromolecules that dynamically exchange within the cellular milieu. They provide a form of compartmentalization crucial for organizing key functions in many cells. Metabolic processes and signaling pathways in both the cytoplasm and nucleus are among the functions performed by MLOs, which are facilitated by diverse combinations of proteins and nucleic acids. However, disruptions in these liquid-liquid phase separation processes (LLPS) may lead to several diseases, such as neurodegenerative disorders and cancer, among others. To foster the study of this process and MLO function, we present MLOsMetaDB (http://mlos.leloir.org.ar), a comprehensive resource of information on MLO- and LLPS-related proteins. Our database integrates and centralizes available information for every protein involved in MLOs, which is otherwise disseminated across a plethora of different databases. Our manuscript outlines the development and features of MLOsMetaDB, which provides an interactive and user-friendly environment with modern biological visualizations and easy and quick access to proteins based on LLPS role, MLO location, and organisms. In addition, it offers an advanced search for making complex queries to generate customized information. Furthermore, MLOsMetaDB provides evolutionary information by collecting the orthologs of every protein in the same database. Overall, MLOsMetaDB is a valuable resource as a starting point for researchers studying the many processes driven by LLPS proteins and membraneless organelles.
Assuntos
Condensados Biomoleculares , Separação de Fases , Proteínas/metabolismo , Organelas/metabolismo , Citoplasma/metabolismoRESUMO
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
RESUMO
Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.
Assuntos
RNA Longo não Codificante , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Longo não Codificante/genética , Etanol/farmacologia , Etanol/metabolismoRESUMO
Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.
RESUMO
The study of labeling selectivity and mechanisms of fluorescent organelle probes in living cells is of continuing interest in biomedical sciences. The tetracationic phthalocyanine-like ZnTM2,3PyPz photosensitizing dye induces a selective violet fluorescence in mitochondria of living HeLa cells under UV excitation that is due to co-localization of the red signal of the dye with NAD(P)H blue autofluorescence. Both red and blue signals co-localize with the green emission of the mitochondria probe, rhodamine 123. Microscopic observation of mitochondria was improved using image processing and analysis methods. High dye concentration and prolonged incubation time were required to achieve optimal mitochondrial labeling. ZnTM2,3PyPz is a highly cationic, hydrophilic dye, which makes ready entry into living cells unlikely. Redox color changes in solutions of the dye indicate that colorless products are formed by reduction. Spectroscopic studies of dye solutions showed that cycles of alkaline titration from pH 7 to 8.5 followed by acidification to pH 7 first lower, then restore the 640 nm absorption peak by approximately 90%, which can be explained by formation of pseudobases. Both reduction and pseudobase formation result in formation of less highly charged and more lipophilic (cell permeant) derivatives in equilibrium with the parent dye. Some of these are predicted to be lipophilic and therefore membrane-permeant; consequently, low concentrations of such species could be responsible for slow uptake and accumulation in mitochondria of living cells. We discuss the wider implications of such phenomena for uptake of hydrophilic fluorescent probes into living cells.
Assuntos
Mitocôndrias , Fármacos Fotossensibilizantes , Corantes Fluorescentes/química , Células HeLa , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Compostos Organometálicos , Oxirredução , Fármacos Fotossensibilizantes/metabolismoRESUMO
Motivation: Proteins involved in liquid-liquid phase separation (LLPS) and membraneless organelles (MLOs) are recognized to be decisive for many biological processes and also responsible for several diseases. The recent explosion of research in the area still lacks tools for the analysis and data integration among different repositories. Currently, there is not a comprehensive and dedicated database that collects all disease-related variations in combination with the protein location, biological role in the MLO, and all the metadata available for each protein and disease. Disease-related protein variants and additional features are dispersed and the user has to navigate many databases, with a different focus, formats, and often not user friendly. Results: We present DisPhaseDB, a database dedicated to disease-related variants of liquid-liquid phase separation proteins. It integrates 10 databases, contains 5,741 proteins, 1,660,059 variants, and 4,051 disease terms. It also offers intuitive navigation and an informative display. It constitutes a pivotal starting point for further analysis, encouraging the development of new computational tools.The database is freely available at http://disphasedb.leloir.org.ar.
RESUMO
Zinc deficiency is commonly attributed to inadequate absorption of the metal. Instead, we show that body zinc stores in Drosophila melanogaster depend on tryptophan consumption. Hence, a dietary amino acid regulates zinc status of the whole insecta finding consistent with the widespread requirement of zinc as a protein cofactor. Specifically, the tryptophan metabolite kynurenine is released from insect fat bodies and induces the formation of zinc storage granules in Malpighian tubules, where 3-hydroxykynurenine and xanthurenic acid act as endogenous zinc chelators. Kynurenine functions as a peripheral zinc-regulating hormone and is converted into a 3-hydroxykynureninezincchloride complex, precipitating within the storage granules. Thus, zinc and the kynurenine pathwaywell-known modulators of immunity, blood pressure, aging, and neurodegenerationare physiologically connected.
Assuntos
Drosophila melanogaster , Cinurenina , Triptofano , Zinco , Animais , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Cinurenina/metabolismo , Túbulos de Malpighi/metabolismo , Triptofano/metabolismo , Zinco/metabolismoRESUMO
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Assuntos
Células Artificiais , Células Artificiais/química , Organelas/química , Biologia SintéticaRESUMO
Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule fluorescence in situ hybridization (FISH) assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 (also known as SAMD4A and SAMD4B, respectively) affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA-binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial complex I inhibition upon exposure to rotenone, but not strong mitochondrial uncoupling upon exposure to CCCP, rapidly induced the dissolution of Smaug1 MLOs. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMP-activated protein kinase (AMPK). Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK-mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins. This article has an associated First Person interview with the first authors of the paper.
Assuntos
Proteínas Quinases Ativadas por AMP , Mitocôndrias , Proteínas Quinases Ativadas por AMP/genética , Núcleo Celular , Humanos , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Serina-Treonina Quinases TOR/genéticaRESUMO
The aggregation of alpha-synuclein (α-Syn) plays a critical role in the development of Parkinson's disease (PD) and other synucleinopathies. α-Syn, which is encoded by the SNCA gene, is a lysine-rich soluble amphipathic protein normally expressed in neurons. Located in the cytosolic domain, this protein has the ability to remodel itself in plasma membranes, where it assumes an alpha-helix conformation. However, the protein can also adopt another conformation rich in cross-beta sheets, undergoing mutations and post-translational modifications, then leading the protein to an unusual aggregation in the form of Lewy bodies (LB), which are cytoplasmic inclusions constituted predominantly by α-Syn. Pathogenic mechanisms affecting the structural and functional stability of α-Syn - such as endoplasmic reticulum stress, Golgi complex fragmentation, disfunctional protein degradation systems, aberrant interactions with mitochondrial membranes and nuclear DNA, altered cytoskeleton dynamics, disrupted neuronal plasmatic membrane, dysfunctional vesicular transport, and formation of extracellular toxic aggregates - contribute all to the pathogenic progression of PD and synucleinopathies. In this review, we describe the collective knowledge on this topic and provide an update on the critical role of α-Syn aggregates, both at the cellular and molecular levels, in the deregulation of organelles affecting the cellular homeostasis and leading to neuronal cell death in PD and other synucleinopathies.
Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Humanos , Neurônios/patologia , Doença de Parkinson/patologia , Sinucleinopatias/patologiaRESUMO
Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular domains in which multiple proteins organize into complex structures to perform specialized functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid phase separation. We also analyze immunofluorescence and transmission electron microscopy images showing the association between the nucleus and other organelles, such as mitochondria and lysosomes, or the labeling of specific proteins within the perinuclear region of cells. Altogether our data support the existence of a perinuclear dense sub-micron region formed by a well-organized three-dimensional network of structural and signaling proteins, including several proteins containing intrinsically disordered regions with phase behavior. This network of filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local crowding, and organizes the movement of molecular complexes within the perinuclear space. Our findings take a key step towards understanding how membraneless regions within eukaryotic cells can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space. Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in their expression can lead to several pathological conditions, and neurological disorders and cancer are among the most frequent.
Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Nuclear/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Animais , Células Cultivadas , Embrião de Galinha , Proteínas Intrinsicamente Desordenadas/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membrana Nuclear/ultraestrutura , Proteoma/genética , Proteoma/metabolismo , Peixe-ZebraRESUMO
BACKGROUND: Nuclear processes such as transcription and RNA maturation can be impacted by subnuclear compartmentalization in condensates and nuclear bodies. Here, we characterize the nature of nuclear granules formed by REST corepressor 2 (RCOR2), a nuclear protein essential for pluripotency maintenance and central nervous system development. RESULTS: Using biochemical approaches and high-resolution microscopy, we reveal that RCOR2 is localized in nuclear speckles across multiple cell types, including neurons in the brain. RCOR2 forms complexes with nuclear speckle components such as SON, SRSF7, and SRRM2. When cells are exposed to chemical stress, RCOR2 behaves as a core component of the nuclear speckle and is stabilized by RNA. In turn, nuclear speckle morphology appears to depend on RCOR2. Specifically, RCOR2 knockdown results larger nuclear speckles, whereas overexpressing RCOR2 leads to smaller and rounder nuclear speckles. CONCLUSION: Our study suggests that RCOR2 is a regulatory component of the nuclear speckle bodies, setting this co-repressor protein as a factor that controls nuclear speckles behavior.
Assuntos
Proteínas Correpressoras/genética , Corpos Nucleares , Salpicos Nucleares , Núcleo Celular , Humanos , Proteínas Nucleares/genética , RNARESUMO
In recent years, attention has been devoted to proteins forming immiscible liquid phases within the liquid intracellular medium, commonly referred to as membraneless organelles (MLO). These organelles enable the spatiotemporal associations of cellular components that exchange dynamically with the cellular milieu. The dysregulation of these liquid-liquid phase separation processes (LLPS) may cause various diseases including neurodegenerative pathologies and cancer, among others. Until very recently, databases containing information on proteins forming MLOs, as well as tools and resources facilitating their analysis, were missing. This has recently changed with the publication of 4 databases that focus on different types of experiments, sets of proteins, inclusion criteria, and levels of annotation or curation. In this study we integrate and analyze the information across these databases, complement their records, and produce a consolidated set of proteins that enables the investigation of the LLPS phenomenon. To gain insight into the features that characterize different types of MLOs and the roles of their associated proteins, they were grouped into categories: High Confidence MLO associated (including Drivers and reviewed proteins), Potential Clients and Regulators, according to their annotated functions. We show that none of the databases taken alone covers the data sufficiently to enable meaningful analysis, validating our integration effort as essential for gaining better understanding of phase separation and laying the foundations for the discovery of new proteins potentially involved in this important cellular process. Lastly, we developed a server, enabling customized selections of different sets of proteins based on MLO location, database, disorder content, among other attributes (https://forti.shinyapps.io/mlos/).
RESUMO
Surface waters often contain a variety of chemical contaminants potentially capable of producing adverse outcomes in both humans and wildlife due to impacts from industrial, urban, and agricultural activity. Here, we report the results of a zebrafish liver (ZFL) cell-based lipidomics approach to assess the potential ecotoxicological effects of complex contaminant mixtures using water collected from eight impacted streams across the United States mainland and Puerto Rico. We initially characterized the ZFL lipidome using high resolution mass spectrometry, resulting in the annotation of 508 lipid species covering 27 classes. We then identified lipid changes induced by all streamwater samples (nonspecific stress indicators) as well as those unique to water samples taken from specific streams. Subcellular impacts were classified based on organelle-specific lipid changes, including increased lipid saturation (endoplasmic reticulum stress), elevated bis(monoacylglycero)phosphate (lysosomal overload), decreased ubiquinone (mitochondrial dysfunction), and elevated ether lipids (peroxisomal stress). Finally, we demonstrate how these results can uniquely inform environmental monitoring and risk assessments of surface waters.
Assuntos
Rios , Poluentes Químicos da Água , Animais , Misturas Complexas , Humanos , Lipidômica , Fígado/química , Porto Rico , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-ZebraRESUMO
BACKGROUND: Functional compartmentalization has emerged as an important factor modulating the kinetics and specificity of biochemical reactions in the nucleus, including those involved in transcriptional regulation. The glucocorticoid receptor (GR) is a ligand-activated transcription factor that translocates to the nucleus upon hormone stimulation and distributes between the nucleoplasm and membraneless compartments named nuclear foci. While a liquid-liquid phase separation process has been recently proposed to drive the formation of many nuclear compartments, the mechanisms governing the heterogeneous organization of GR in the nucleus and the functional relevance of foci formation remain elusive. RESULTS: We dissected some of the molecular interactions involved in the formation of GR condensates and analyzed the GR structural determinants relevant to this process. We show that GR foci present properties consistent with those expected for biomolecular condensates formed by a liquid-liquid phase separation process in living human cells. Their formation requires an initial interaction of GR with certain chromatin regions at specific locations within the nucleus. Surprisingly, the intrinsically disordered region of GR is not essential for condensate formation, in contrast to many nuclear proteins that require disordered regions to phase separate, while the ligand-binding domain seems essential for that process. We finally show that GR condensates include Mediator, a protein complex involved in transcription regulation. CONCLUSIONS: We show that GR foci have properties of liquid condensates and propose that active GR molecules interact with chromatin and recruit multivalent cofactors whose interactions with additional molecules lead to the formation of a focus. The biological relevance of the interactions occurring in GR condensates supports their involvement in transcription regulation.
Assuntos
Receptores de Glucocorticoides/genética , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Humanos , Camundongos , Domínios Proteicos , Receptores de Glucocorticoides/metabolismoRESUMO
Disturbances in skeletal muscle lipid oxidation might induce ectopic fat deposition and lipotoxicity. Nevertheless, the cellular mechanisms that regulate skeletal muscle lipid oxidation have not been fully determined. We aimed to determine whether there was an association between relative whole body lipid oxidation and mitochondrial size or mitochondria-sarcoplasmic reticulum interactions in the skeletal muscle. Twelve healthy men were included [mean (standard deviation), 24.7 (1.5) yr old, 24.4 (2.6) kg/m2]. The respiratory quotient (RQ) was used to estimate relative lipid oxidation at rest and during exercise (50% maximal oxygen consumption, 600 kcal expended). A skeletal muscle biopsy was obtained from the vastus lateralis at rest. Transmission electron microscopy was used to determine mitochondrial size and mitochondria-sarcoplasmic reticulum interactions (≤50 nm of distance between organelles). Protein levels of fusion/fission regulators were measured in skeletal muscle by Western blot. Resting RQ and exercise RQ associated inversely with intermyofibrillar mitochondrial size (r = -0.66 and r = -0.60, respectively, P < 0.05). Resting RQ also associated inversely with the percentage of intermyofibrillar mitochondria-sarcoplasmic reticulum interactions (r = -0.62, P = 0.03). Finally, intermyofibrillar mitochondrial size associated inversely with lipid droplet density (r = -0.66, P = 0.01) but directly with mitochondria fusion-to-fission ratio (r = 0.61, P = 0.03). Our results show that whole body lipid oxidation is associated with skeletal muscle intermyofibrillar mitochondrial size, fusion phenotype, and mitochondria-sarcoplasmic-reticulum interactions in nondiabetic humans.