Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894648

RESUMO

As a native fruit of China, chestnut rose (Rosa roxburghii Tratt) juice is rich in bioactive ingredients. Oriental fruit moth (OFM), Grapholita molesta (Busck), attacks the fruits and shoots of Rosaceae plants, and its feeding affects the quality and yield of chestnut rose. To investigate the effects of OFM feeding on the quality of chestnut rose juice, the bioactive compounds in chestnut rose juice produced from fruits eaten by OFM were measured. The electronic tongue senses, amino acid profile, and untargeted metabolomics assessments were performed to explore changes in the flavour and metabolites. The results showed that OFM feeding reduced the levels of superoxide dismutase (SOD), tannin, vitamin C, flavonoid, and condensed tannin; increased those of polyphenols, soluble solids, total protein, bitterness, and amounts of bitter amino acids; and decreased the total amino acid and umami amino acid levels. Furthermore, untargeted metabolomics annotated a total of 426 differential metabolites (including 55 bitter metabolites), which were mainly enriched in 14 metabolic pathways, such as flavonoid biosynthesis, tryptophan metabolism, tyrosine metabolism, and diterpenoid biosynthesis. In conclusion, the quality of chestnut rose juice deteriorated under OFM feeding stress, the levels of bitter substances were significantly increased, and the bitter taste was subsequently enhanced.


Assuntos
Mariposas , Rosa , Animais , Frutas/metabolismo , Metabolômica , Flavonoides/farmacologia , Aminoácidos/metabolismo
2.
Pest Manag Sci ; 79(8): 2823-2830, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36929567

RESUMO

BACKGROUND: Each Grapholita molesta female only copulates once during its lifetime and thus must maintain the viability of stored eupyrene sperm for male reproductive success. The male ejaculate comprises abundant accessory gland proteins produced by the male accessory gland (AG), and many of which are major effectors for sperm storage and maintenance. RESULTS: Here, we reported that an antioxidant protein, peroxiredoxin 1 (GmolPrx1), secreted by the male AG, is essential for protecting eupyrene sperm from oxidative stress and maintaining their quality during storage in the female bursa copulatrix (BC). Our data showed that GmolPrx1 is highly expressed in the AG of sexually mature males. The GmolPrx1 protein is localized to the cytoplasm of AG cells and delivered to the female BC during mating. Knockdown of GmolPrx1 strongly decreased the fertility of mated females. Additionally, we evaluated oxidative status in the spermatophore of females and found that the content of hydrogen peroxide increased significantly after mating with GmolPrx1 knockdown males. Finally, the quality assessment of eupyrene sperm demonstrated that the plasma membrane integrity, acrosome integrity, and DNA integrity were all severely impaired in the spermatophore of females after mating with GmolPrx1 knockdown males, which may contribute to the fertility decline in males. CONCLUSION: Our current data demonstrated that activities of eupyrene sperm stored in females can be significantly impaired by enhanced oxidative stress through knocking down of GmolPrx1 in males. Our finding thus may further lay new foundations for the control of G. molesta through suppressing their populations by manipulating male reproductive genes. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Comportamento Sexual Animal , Animais , Masculino , Feminino , Sêmen , Reprodução , Espermatozoides , Fertilidade/genética
3.
Insects ; 13(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36135538

RESUMO

Grapholita molesta is one of the most serious pests in fruits orchards. Flight performance of male insects and fecundity of female insects are important quality control parameters when moths are mass-reared for use in environment-friendly control strategies such as the sterile insect technique (SIT). However, information about flight performance, fecundity, and ovary development of G. molesta at different ages is scarce. In this study, we used a flight mill information system to measure the flight ability of female and male adults of G. molesta at different ages, and evaluated fecundity and ovarian development of female adults at different ages. The results demonstrated that the flight parameters (cumulative flight distance, cumulative flight time, maximum flight distance and maximum flight duration) of female and male G. molesta varied with age. Six-day-old female moths and three-day-old male moths were the strongest fliers, whereas the fecundity of one-day and two-day-old female moths was significantly lower than that of three to seven-day-old females. Five-day-old females had the highest fecundity. Their ovaries demonstrated mature eggs in the lateral and middle oviducts as of the third day post-emergence. It is suggested that the optimal age for moths to be released in SIT programs is three days, and moths older three days can be used for mass-rearing in a factory.

4.
Insects ; 13(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135539

RESUMO

Grapholita molesta, the oriental fruit moth, is a serious pest of fruit trees with host transfer characteristics worldwide. The gut microbiota, which plays a crucial part in insect physiology and ecology, can be influenced by many elements, such as antibiotics, temperature, diet, and species. However, the effects of antibiotics on G. molesta gut microbiota are still unclear. In this study, we selected five common antibiotic agents to test the inhibition of G. molesta gut microbiota, and found ciprofloxacin shown the best antibacterial activity. After feeding 1 µg/mL of ciprofloxacin, the relative abundance of Actinobacteria and Cyanobacteria decreased significantly, while that of Firmicutes and Bacteroidetes increased. PICRUSt2 analysis indicated that most functional prediction categories were enriched in the G. molesta gut, including amino acid transport and metabolism, translation, ribosomal structure and biogenesis, carbohydrate transport and metabolism, transcription, cell wall/membrane/envelope biogenesis, and energy production and conversion. Finally, ciprofloxacin feeding significantly affected larval growth, development, and reproduction, resulting in prolonged larval development duration, shortened adult longevity, and significantly decreased single female oviposition and egg hatchability. In addition, we isolated and purified some culturable bacteria belonging to Proteobacteria, Firmicutes, Actinobacteria, and cellulase-producing bacteria from the G. molesta midgut. In brief, our results demonstrate that antibiotics can have an impact on G. molesta gut bacterial communities, which is beneficial for host growth and development, as well as helping female adults produce more fertile eggs. These results will thus provide a theoretical reference for developing new green control technology for G. molesta.

5.
Insect Mol Biol ; 31(5): 659-670, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690916

RESUMO

As an intermediate molecule in the Insulin/Insulin-like growth factor signalling pathway (IIS), the insulin receptor (IR) plays vital roles linking nutritional signals to the downstream regulation of metabolic homeostasis, development, metamorphosis, reproduction and stress responses. In the present study, we describe the molecular characteristics of IR in the cosmopolitan fruit boring pest, Grapholita molesta, and its predicted posttranscription regulator miR-982490, and elucidate its regulatory roles in glucolipid homeostasis and metamorphosis. Phylogenetic and domain analyses indicate that lepidopteran IRs normally cluster within families, and that four main domains are conserved in GmIR and those of other Lepidoptera. Bio-informatic prediction, synchronic expression profile evaluation and dual luciferase reporter assays indicated negative regulation of GmIR by miR-982490. Injection of miR-982490 agomir into fifth instar larvae yielded effects similar to dsGmIR injection, resulting in enhanced levels of trehalose and triglyceride in haemolymph, and reduced pupation success and pupal weight, both of which could be rescued by co-injection of dsGmIR and miR-982490 antagomir. We infer that GmIR regulates glucolipid homeostasis and affects G. molesta metamorphosis via interactions with its posttranscriptional regulator miR-982490. This study expands our understanding of the regulatory network of IIS in insect nutritional homeostasis and development.


Assuntos
MicroRNAs , Mariposas , Animais , Frutas , Homeostase , Larva/genética , MicroRNAs/genética , Filogenia , Receptor de Insulina/genética
6.
Pest Manag Sci ; 78(5): 1953-1962, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35085422

RESUMO

BACKGROUND: Insect pheromone synergists have been widely used to produce potent pheromone products for environment-friendly pest control. Codlemone (Cod) and (Z)-8-dodecenol (Dod) are two major Grapholita molesta pheromone synergists, with Cod having greater synergism and affinity for G. molesta pheromone binding protein 2 (GmolPBP2). Uncovering structural information key to the different binding affinity of Cod and Dod to GmolPBP2 would gain insights into what causes their synergy activity discrepancy. RESULTS: Binding modes of the two synergists in the binding pocket of GmolPBP2 were analyzed and compared by molecular dynamics-based approaches. Although Cod and Dod were stabilized in a similar hydrophobic pocket, their interaction details with GmolPBP2 were divergent due to the extra double bond (C10═C11) in Cod. The C10═C11 improved the hydrophobic interactions of Cod with around residues. Such hydrophobic interaction improvement was also reflected in the raised importance of Phe11 in the GmolPBP2-Cod interaction. Not only that, the increased hydrophobic forces introduced by the C10═C11 changed the CH2-OH orientation in the GmolPBP2-Cod complex, which improved the H-bond interaction. Electrostatic complementarity analysis further indicated the positive role of C10═C11 in optimizing GmolPBP2-Cod interaction. CONCLUSION: The C10═C11 is thought to contribute greatly to Cod's stronger synergy as a group key to the higher GmolPBP2-affinity, based on which the improvement directions for Cod and Dod were addressed as well. Our findings will aid in the development and optimization of more effective pheromone synergists, resulting in more effective pheromone-based pest management.


Assuntos
Mariposas , Feromônios , Animais , Dodecanol/análogos & derivados , Feromônios/farmacologia
7.
Pest Manag Sci ; 78(2): 643-652, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34658157

RESUMO

BACKGROUND: Pheromone-based management is a leading nonpesticidal strategy among integrated pest management options. Improving the potency of pheromone products by adding synergists would be a practical way to popularize pheromone-based management as well as to reduce pesticide use. RESULTS: Using reverse chemical ecology, synergists for Grapholita molesta sex pheromone were screened. Combined molecular docking and in vitro binding assay led to the determination of four potentially active odorants showing high affinity to G. molesta pheromone binding protein 2 (GmolPBP2). Thereafter, the high affinity between Codlemone and GmolPBP2 was further verified by exploration of GmolPBP2-Codlemone interactions. As the only sex pheromone synergist validated by both laboratory behavioral tests and field trapping, Codlemone was used to optimize commercial sex attractants currently used in G. molesta control. The recommended formulation [(Z)-8-dodecenyl acetate:(E)-8-dodecenyl acetate:Codlemone = 95:4:10] was found to trap about five to six times more G. molesta adults than the commercial sex attractant [(Z)-8-dodecenyl acetate:(E)-8-dodecenyl acetate: (Z)-8-dodecenol = 95:4:1]. CONCLUSION: Codlemone is an excellent pheromone synergist that can be potentially sensed by GmolPBP2, which can remarkably improve the potency of G. molesta sex attractants. It is believed that the introduction of reverse chemical ecology would increase the chance of discovering pheromone synergists, promoting the development of more efficacious pheromone products that can be used in controlling G. molesta and beyond. © 2021 Society of Chemical Industry.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Simulação de Acoplamento Molecular , Feromônios/farmacologia , Atrativos Sexuais/farmacologia , Trabalho Sexual
8.
Bull Entomol Res ; 111(5): 616-627, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33998417

RESUMO

The short-lived polygamous moth Grapholita molesta (Busck) is an important fruit pest worldwide. Trapping males by synthetic female sex pheromones is not an effective reproductive control strategy. It is important to improve this technology by understanding the mating system of G. molesta. This study investigated mating opportunities and fertile egg production by altering the operational sex ratio, mating age, and male mating history in repeated single mating and multiple mating in the two sexes. Our results showed that the mating and reproductive parameters of virgin males were affected by the number and age of virgin females. Males preferred a female number ≤three-fifths of the male number or ≤2-day-old females, while they discriminated against a female number ≥three times of the male number or ≥5-day-old females. On the other hand, the mating and reproductive parameters of virgin females were affected by repeated single mating and especially multiple mating under different male mating histories. Females preferred once-mated males and discriminated against virgin males. These results indicated that mating systems including more and older virgin females for virgin males and different virgin males for virgin females may be suitable for suppressing G. molesta populations. Hence, these results revealed that preventing mating of virgin adults by synthetic female sex pheromones should be most effective in controlling G. molesta.


Assuntos
Mariposas/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal , Fatores Etários , Animais , Feminino , Masculino , Oviposição
9.
Arch Insect Biochem Physiol ; 107(2): e21791, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33860954

RESUMO

In the last decade, unexpected high temperatures have been frequent in spring and early summer. Numerous studies have shown that such thermal stress has substantial effects on life-history traits that influence fitness of insects, but few have examined expression dynamics of heat shock proteins (Hsps) across developmental stages, especially as regards potential carry-over effects at the transcriptional level across metamorphosis. We exposed pupae of the oriental fruit moth ("OFM," Grapholita molesta Busck) to mild heat stress (38°C, 6 h) and then quantified expression patterns of six Hsps (Hsp90, 70, 60, 40, 21, and 11) from pupal through adult stages. Almost all Hsps showed a higher expression immediately after pupae were heat-stressed, but later dropped to normal levels after metamorphosis. Although upregulation of Hsps is transient and the effects carry over longer to early adult stage, upregulation will nonetheless have positive effects on adult fitness. The fitness of some insects may benefit from higher expression of chaperon genes after mild stress, in the form of higher fecundity and longer lifespan, as a carry-over effect. These results suggest that mild thermal stress can change genetic expression that later boosts adult fitness through a cascade effect.


Assuntos
Proteínas de Choque Térmico/metabolismo , Metamorfose Biológica/fisiologia , Mariposas/metabolismo , Animais , Fertilidade/fisiologia , Regulação da Expressão Gênica/fisiologia , Resposta ao Choque Térmico/fisiologia , Proteínas de Insetos/metabolismo , Longevidade/fisiologia , Pupa/metabolismo
10.
Front Microbiol ; 11: 1366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714300

RESUMO

Grapholita molesta, the oriental fruit moth, is a serious global pest of many Rosaceae fruit trees. Gut microorganisms play important roles in host nutrition, digestion, detoxification, and resistance to pathogens. However, there are few studies on the microbiota of G. molesta, particularly during metamorphosis. Here, the diversity of gut microbiota across the holometabolous life cycle of G. molesta was investigated comprehensively by Illumina high-throughput sequencing technology. The results showed that the microbiota associated with eggs had a high number of operational taxonomic units (OTUs). OTU and species richness in early-instar larvae (first and second instars) were significantly higher than those in late-instar larvae (third to fifth instars). Species richness increased again in male pupae and adults, apparently during the process of metamorphosis, compared to late-instar larvae. Proteobacteria and Firmicutes were the dominant phyla in the gut and underwent notable changes during metamorphosis. At the genus level, gut microbial community shifts from Gluconobacter and Pantoea in early-instar larvae to Enterococcus and Enterobacter in late-instar larvae and to Serratia in pupae were apparent, in concert with host developmental changes. Principal coordinate analysis (PCoA) and linear discriminant analysis effect size (LEfSe) analyses confirmed the differences in the structure of gut microbiota across different developmental stages. In addition, sex-dependent bacterial community differences were observed. Microbial interaction network analysis showed different correlations among intestinal microbes at each developmental stage of G. molesta, which may result from the different abundance and diversity of gut microbiota at different life stages. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that most functional prediction categories of gut microbiota were related to membrane transport, carbohydrate and amino acid metabolism, and DNA replication and repair. Bacteria isolated by conventional culture-dependent methods belonged to Proteobacteria, Firmicutes, and Actinobacteria, which was consistent with high-throughput sequencing results. In conclusion, exploration of gut bacterial community composition in the gut of G. molesta should shed light into deeper understanding about the intricate associations between microbiota and host and might provide clues to the development of novel pest management strategies against fruit borers.

11.
Insects ; 11(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635150

RESUMO

Monitoring oriental fruit moth Grapholita molesta Busck (Lepidoptera: Tortricidae), populations based on counts in sex pheromone-baited traps within sex pheromone-treated orchards for mating disruption (MD) is challenging since male orientation to traps is disrupted. In this study, we evaluated a new commercial pheromone-kairomone combination lure for G. molesta (Pherocon® OFM Combo™ Dual™), which combines the G. molesta and Cydia pomonella L. sex pheromones with a blend of acetic acid and terpinyl acetate. Trap comparisons were performed in 33 trials in peach and nectarine orchards under MD (24) or non-MD (9) during the 2018-2019 period in Italy. Male and total moth captures in traps baited with the combination lure were significantly greater than in traps with G. molesta pheromone in both years and across both pheromone treatments. The proportion of females in the total moth captures using the combination lure averaged ca. 7% across all trials. The by-catch of non-targets, i.e., Apis mellifera L., was low in traps baited either with the combination and the sex pheromone lure, while trap color (white) affected the capture of beneficials but not of the target pest. Our study proves that this combination lure can improve the monitoring and management for G. molesta in stone fruits. New studies are needed to define action thresholds to trigger supplemental control methods to MD. Secondly, female-based monitoring lures should be further developed to improve management strategies.

12.
J Agric Food Chem ; 68(9): 2711-2717, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32040304

RESUMO

Grapholita molesta is a global pest of stone and pome fruits. The sensitive olfactory system plays a crucial role in regulating key behavioral activities of insects and G. molesta relies heavily on general odorant receptors (ORs) to detect host-plant volatiles. In this study, three general OR genes from G. molesta (GmolOR12, GmolOR20, and GmolOR21) were identified. Quantitative polymerase chain reaction revealed that GmolORs expression was considerably higher in adults and adult antennae than in any other life stages and body parts, respectively. Moreover, the expression of GmolORs was significantly higher in the antennae of females than in those of males, with a peak in the antennae of 3-days-old adult females. GmolOR20 and GmolOR21 displayed no responses to any of the odorant compounds tested in the Xenopus oocyte system. GmolOR12 was tuned mainly to 5 of the 47 odorant components tested (including decanol, heptanal, octanal, nonanal, and decanal), and the response to aldehydes among the 5 components was the highest. Additionally, they all elicited female and male antennae electroantennogram responses, and the aldehydes elicited the highest response among the 5 components. These results suggested that GmolOR12 in the G. molesta olfactory system plays an important role in sensing aldehydes and that GmolOR12 is involved in sensing host-plant volatiles. These findings provide insight into the possibility of using host-plant volatiles for the control of G. molesta.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Feminino , Proteínas de Insetos/genética , Masculino , Mariposas/genética , Odorantes/análise , Doenças das Plantas/parasitologia , Plantas/química , Plantas/metabolismo , Receptores Odorantes/genética
13.
Insect Sci ; 27(6): 1233-1243, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529759

RESUMO

Grapholita molesta is one of the most destructive fruit pests distributed worldwide. Odorant receptors (ORs) located on the dendritic membrane of chemosensory neurons are deemed to be key molecules for sensing exogenous chemical signals. In this study, GmolOR9, a general OR from G. molesta, was functionally characterized. Quantitative real-time polymerase chain reaction revealed that GmolOR9 was more highly expressed in adults than in other stages, including eggs, larvae, and pupae. GmolOR9 expression was highly significantly more in the antennae of females than in those of males, and the highest level occurred in the antennae of 3-day-old female adults. GmolOR9 was broadly tuned to eight of 47 odorant components tested, including (Z)-3-hexenyl acetate, butyl propionate, ethyl hexanoate, ethyl heptanoate, 1-hexanol, (Z)-3-hexenol, 2-ethyl-1-hexanol, and linalool, by in vitro heterologous expression. Furthermore, electroantennogram responses indicated that the effects of dsOR9-injected females to (Z)-3-hexenyl acetate dramatically decreased. These results suggested that GmolOR9 might be involved in detecting host-plant volatiles. Moreover, (Z)-3-hexenyl acetate might serve as a potential attractant for the biological control of G. molesta.


Assuntos
Proteínas de Insetos/genética , Mariposas/fisiologia , Odorantes , Receptores Odorantes/genética , Compostos Orgânicos Voláteis/metabolismo , Fatores Etários , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Feminino , Frutas , Herbivoria , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Filogenia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Alinhamento de Sequência
14.
Plants (Basel) ; 8(10)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597399

RESUMO

Sugar-acetic acid-ethanol-water mixture (SAEWM) trapping has initially shown the potential efficacy for monitoring or trapping insects. It is unknown how SAEWM-baited traps affect field number of oriental fruit moth (OFM), Grapholita molesta (Busck) (Lepidoptera: Tortricidae), the female/male ratio trapped, and the type of natural-enemy insects captured. This study investigated changes in seasonal population dynamics and diurnal flight rhythm of OFM, the number and female/male ratio of OFM and the numbers of Coccinellidae and Chrysopidae trapped by SAEWM in peach-apple mixed-planting orchards. The SAEWM performed well in trapping OFM, most of which were adult females, with the maximum trapping at 2.5 m above ground. The daily trapping peak occurred between 18:00 and 20:00, during each continuous monitoring period, with another peak occurring at 4:00-8:00, after the second monitoring period (2-5 July). However, the use of SAEWM also resulted in the trapping of Coccinellidae and Chrysopidae, of which peak trapping time partially overlapped with the second and third peak trapping times of OFM. We suggest the cessation of SAEWM trapping during the peak activity time of Coccinellidae and Chrysopidae, or application of alternative attractive mixture that do not trap the natural enemy insects, in order to protect the ecological balance in the field.

15.
J Econ Entomol ; 112(5): 2369-2380, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31173097

RESUMO

Methoprene-tolerant (Met) is a putative JH intracellular receptor that transduces JH signal by activation of the inducible Krüppel homolog 1 (Kr-h1). We analyzed the gene sequences of Met and Kr-h1 and their patterns of expression in Grapholita molesta (Busck) immature and adult stages in order to better understand the roles of these primary JH responders in regulating the metamorphosis and reproduction of this global pest of fruit crops. The deduced amino acid sequences of both GmMet and GmKr-h1 were highly homologous to those of other Lepidoptera, especially the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Peak expression of GmMet occurred during the last 3 to 5 d of the final instar, followed by that of GmKr-h1, in the last 3 d of final instar. Similar patterns of GmMet and GmKr-h1 expression were detected across various tissue types in the fifth-instar larvae, with the highest expression observed in the head, followed by the epidermis, and the fat body. When expression of GmMet and GmKr-h1 was knocked down via dsRNA injection in the fifth instar, the results were increased larval mortality, abnormal pupation, delayed pupal duration, reduced adult emergence, extended preoviposition period, and reduced fecundity. We infer that both GmMet and GmKr-h1 participated in regulation of metamorphosis and reproduction in G. molesta, the former acting upstream of the latter, and could present biorational targets for novel pest control compounds.


Assuntos
Fatores de Transcrição Kruppel-Like , Metoprene , Animais , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis , Larva , Metamorfose Biológica
16.
Neotrop Entomol ; 47(1): 152-159, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28378269

RESUMO

Grapholita molesta (Busck) is one of the main pests in apple crops in Brazil, where it is controlled by mating disruption (MD) with the use of the synthetic sex pheromone. However, sex-pheromone-based monitoring is not effective in MD-treated areas and may result in losses in production. This work has defined a trap model and a bait for luring G. molesta adults in MD apple orchards. The experiments were conducted in commercial apple orchards located in São Joaquim, SC, Brazil. Three trap models-McPhail, Pot, and Ajar-and three baits-grape juice (25%) (GJ), sugarcane molasses (25%) (SM), and a solution containing brown sugar (8.69%) and terpinyl acetate (0.05%) (TAS)-were assessed for luring G. molesta adults in areas subjected to the mating disruption. The assessments were performed weekly by collecting the insects caught in the traps. In addition, time needed to replace traps was also assessed, as well as the selectivity of the trap/bait set. In the laboratory, G. molesta adults were sexed, and the females were dissected to confirm reproductive status. We discuss our results and sugarcane molasses (25%) captured the least number of G. molesta adults regardless of the tested traps. The Ajar/TAS, Pot/TAS, and McPhail/GJ captured the largest number of G. molesta adults. The Ajar/TAS was the most selective and easier to handle. TAS was efficient in catching G. molesta until 14 days after preparation of the solution. Ajar/TAS has potential to be used in the monitoring of G. molesta in apple orchards.


Assuntos
Controle de Insetos/instrumentação , Controle de Insetos/métodos , Mariposas , Animais , Brasil , Feminino , Sucos de Frutas e Vegetais , Masculino , Malus , Melaço , Açúcares , Terpenos
17.
Ciênc. rural (Online) ; 48(1): e20170253, 2018. tab
Artigo em Inglês | LILACS | ID: biblio-1044974

RESUMO

ABSTRACT: The use of insecticides has been the main tool for Grapholita molesta (Busck) control in Brazil, which is considered one of the most important pests in apple and peach orchards. In order to implement an Insect Resistance Management (IRM) program, studies were conducted to characterize the baseline susceptibility of G. molesta to major insecticides for its control. Then, we conducted an insecticide susceptibility monitoring in thirteen field-collected populations of the pest. Neonates (0-24h old) were exposed to insecticides applied on surface of artificial diet. A high susceptibility was verified when neonates of the Laboratory population of G. molesta were exposed to insecticides with LC50 values (µg a.i./cm2) of 0.1 (spinetoram), 1.0 (metaflumizone), 1.2 (chlorantraniliprole), 4.8 (novaluron), 5.1 (tebufenozide), 11.3 (phosmet) and 222.5 (pyriproxyfen). Based on the LC99 (µg a.i./cm2), the diagnostic concentrations of 0.6 (spinetoram), 5.5 (metaflumizone), 5.6 (chlorantraniliprole), 19.6 (tebufenozide), 37.4 (phosmet), 37.8 (novaluron) and 2011 pyriproxyfen) caused high mortality (>95%) of neonates from field populations. These diagnostic concentrations will be used in resistance monitoring programs of G. molesta in Brazil.


RESUMO: O uso de inseticidas tem sido a principal ferramenta para o controle da Grapholita molesta (Busck) no Brasil, considerada uma das mais importantes pragas em pomares de macieira e pessegueiro. Para implementar um programa de Manejo de Resistência a Insetos (MRI), estudos foram conduzidos para estabelecer uma linha básica de suscetibilidade de G. molesta a inseticidas utilizados para o seu controle. Posteriormente, foi realizado o monitoramento da suscetibilidade a inseticidas em treze populações da praga provenientes do campo. Lagartas (0-24 horas de idade) foram expostas a inseticidas aplicados na superfície da dieta artificial. Verificou-se alta suscetibilidade de lagartas neonatas de G. molesta (população de laboratório) quando foram expostas aos inseticidas, com valores de CL50 (µg i.a./cm2) de 0,1 (espinetoram), 1,0 (metoxifenozida), 1,2 (clorantraniliprole), 4,8 (novaluron), 5,1 (tebufenozida), 11,3 (fosmete) e 222,5 (piriproxifem). Com base na CL99 (µg i.a./cm2), as concentrações diagnósticas de 0,6 (espinetoram), 5,5 (metaflumizona), 5,6 (clorantraniliprole), 19,6 (tebufenozida), 37,4 (fosmete), 37,8 (novaluron) e 2.011 (piriproxifem) ocasionaram alta mortalidade (> 95%) de neonatas provenientes de populações de campo. Essas concentrações diagnósticas poderão ser utilizadas em programas de monitoramento da resistência de G. molesta no Brasil.

18.
Environ Entomol ; 46(4): 871-877, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881950

RESUMO

Studying the susceptibility of peach trees to Grapholita molesta (Busck) is one of the major steps in the development of pest-resistant peach varieties. This work evaluated the susceptibility of 55 genotypes of the "Prunus Rootstock Collection" ("Coleção Porta-enxerto de Prunus") of Embrapa Temperate Climate (Pelotas, Rio Grande do Sul, Brazil) to the natural infestation of G. molesta, assessed the oviposition preference of G. molesta in choice and no-choice bioassays, and estimated the biological parameters and the fertility life table on different Prunus spp. genotypes in the laboratory. Genotypes Prunus kansuensis (Rehder), I-67-52-9, and I-67-52-4 were the most susceptible to G. molesta infestation in the field (>60% of branches infested), while 'Sharpe' (Prunus angustifolia x Prunus spp.) and Prunus sellowii (Koehne) were the least infested (0% of branches infested). In choice and no-choice bioassays, G. molesta preferred to oviposit on P. kansuensis when compared with Sharpe. The Sharpe genotype also showed an antibiosis effect, resulting in negative effects on the fertility life table parameters when compared with the genotypes P. kansuensis and 'Capdeboscq.' The results found in the present study can provide information to initiate a long-term breeding program moving desired G. molesta resistance traits from the rootstock into the Prunus spp. cultivars.


Assuntos
Herbivoria , Mariposas/fisiologia , Oviposição , Prunus/genética , Animais , Brasil , Genótipo , Interações Hospedeiro-Patógeno , Larva/crescimento & desenvolvimento , Larva/fisiologia , Características de História de Vida , Mariposas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Prunus/fisiologia
19.
Pest Manag Sci ; 73(9): 1921-1926, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28233443

RESUMO

BACKGROUND: Nanotechnology has recently allowed the production of formulations for controlled release of active ingredients. In the present study, the electrospinning technique was used to produce nanoscale dispensers for attract-and-kill strategies. Non-woven nanofibres containing insecticide (cypermethrin) and (E)-8,(Z)-8-dodecenyl acetate and (Z)-8-dodecanol (0.87 mg L-1 ), the main components of Grapholita molesta (Lepidoptera: Tortricidae) (Busck) pheromone, were evaluated in laboratory experiments. Male electroantennographic (EAG) responses and mortality (tarsal-contact and attract-and-kill behavioural cages) bioassays were performed for nanofibres (with and without insecticide) exposed for different periods (21, 42, 63 and 84 days) in controlled and non-exposed conditions. RESULTS: There were no significant differences in G. molesta male EAG responses based on the time of exposure within treatments. Nanofibres with pheromone only and with pheromone plus insecticide elicited equal EAG responses. Mortality in tarsal-contact bioassays was greater than 87% after exposure for 84 days. In the attract-and-kill bioassays, mortality ranged from 28.4 to 56.6%, although no difference was observed on insect mortalities over time (24, 48 and 72 h). CONCLUSION: Incorporation of cypermethrin in nanofibres did not interfere with G. molesta attractiveness. Both aspects of the strategy, the attractant and killing effects, were recorded using innovative nanofibres, and long-term effects suggest a controlled release of pheromone and insecticide. © 2017 Society of Chemical Industry.


Assuntos
Bioensaio/instrumentação , Laboratórios , Lepidópteros/efeitos dos fármacos , Nanotecnologia/instrumentação , Feromônios/farmacologia , Animais , Masculino
20.
J Invertebr Pathol ; 141: 1-5, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27686262

RESUMO

The Oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), is a major pest of fruit trees worldwide, such as peach and apple. Bacillus thuringiensis has been shown to be an efficient alternative to synthetic insecticides in the control of many agricultural pests. The objective of this study was to evaluate the effectiveness of B. thuringiensis individual toxins and their mixtures for the control of G. molesta. Bioassays were performed with Cry1Aa, Cry1Ac, Cry1Ca, Vip3Aa, Vip3Af and Vip3Ca, as well as with the commercial products DiPel® and XenTari®. The most active proteins were Vip3Aa and Cry1Aa, with LC50 values of 1.8 and 7.5ng/cm2, respectively. Vip3Ca was nontoxic to this insect species. Among the commercial products, DiPel® was slightly, but significantly, more toxic than XenTari®, with LC50 values of 13 and 33ng commercial product/cm2, respectively. Since Vip3A and Cry1 proteins are expressed together in some insect-resistant crops, we evaluated possible synergistic or antagonistic interactions among them. The results showed moderate to high antagonism in the combinations of Vip3Aa with Cry1Aa and Cry1Ca.


Assuntos
Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores/métodos , Animais , Toxinas de Bacillus thuringiensis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...