RESUMO
As sperm whales are important predators that control energy flux in the oceans, changes in their population can be used as a sentinel to measure of ecosystem health. The present study conducted a sperm whale survey of the eastern Midriff Islands Region in the Gulf of California over the course of nine years, recording sightings and collecting photographs of the fluke of sperm whale individuals. A photo-identification catalog was compiled, while individual recapture data were used to estimate the population size in the central portion of the Gulf of California, using a Jolly-Seber POPAN open population model. The results obtained show a yearly population of between 20 and 167 sperm whales, with a super population of 354 sperm whales observed between 2009 and 2015. However, from 2016 to 2018, no sightings of the species were recorded, which coincides with the decline observed in landings of their main prey, the jumbo squid, in the region. General additive model conducted on sperm whale sightings per unit of effort vs jumbo squid landings obtained an adjusted R2 of 0.644 and a deviance explained of 60.3%, indicating a good non-linear relationship between sightings of this odontocete and its prey availability. This evidence suggests that sperm whales departed the region between 2016 and 2018, due to a documented fishery collapse alongside changes of their main prey into its small phenotype, possibly as the result of increase warming conditions in surface and subsurface waters in the Gulf of California in the last three decades.
Assuntos
Decapodiformes , Cachalote , Animais , Cachalote/fisiologia , Decapodiformes/fisiologia , Dinâmica Populacional , Densidade Demográfica , Ecossistema , CaliforniaRESUMO
Over recent decades, anthropogenic forest fires have significantly altered vegetation dynamics in the Amazon region. While human activities primarily initiate these fires, their escalation is intricately linked to climatic conditions, particularly droughts induced by the warm El Niño phase. This study investigates the impact of meteorological and hydrological drought on forest fires in the Amazon, focusing on the role of groundwater and El Niño events. Utilizing comprehensive drought indicators at various soil depths and standardized precipitation indexes, the research spans from 2004 to 2016, revealing a consistent decrease in humidity conditions across surface soil moisture, root zone soil moisture, and groundwater storage levels. With its slower response to precipitation changes, groundwater emerges as a crucial factor influencing hydrological drought patterns in the Amazon. The spatial distribution of drought conditions is explored, highlighting areas with lower humidity concentrations in the northeast and a correlation between forest fires and positive rates of change in burned area fraction during El Niño events. Notably, the study underscores the substantial increase in burned area during the 2015-2016, characterized by a very strong El Niño. This nuanced understanding of groundwater dynamics and its interplay with El Niño events provides critical insights for developing a tailored fire risk index in the ecologically significant and vulnerable Amazon basin, subsidizing strategies for mitigating fire risk and enhancing preparedness.
RESUMO
Chronic neuropathic pain (CNP) remains a significant clinical challenge, with complex neurophysiological underpinnings that are not fully understood. Identifying specific neural oscillatory patterns related to pain perception and interference can enhance our understanding and management of CNP. To analyze resting electroencephalography data from individuals with chronic neuropathic pain to explore the possible neural signatures associated with pain intensity, pain interference, and specific neuropathic pain characteristics. We conducted a secondary analysis from a cross-sectional study using electroencephalography data from a previous study, and Brief Pain Inventory from 36 patients with chronic neuropathic pain. For statistical analysis, we modeled a linear or logistic regression by dependent variable for each model. As independent variables, we used electroencephalography data with such brain oscillations: as delta, theta, alpha, and beta, as well as the oscillations low alpha, high alpha, low beta, and high beta, for the central, frontal, and parietal regions. All models tested for confounding factors such as age and medication. There were no significant models for Pain interference in general activity, walking, work, relationships, sleep, and enjoyment of life. However, the model for pain intensity during the past four weeks showed decreased alpha oscillations, and increased delta and theta oscillations were associated with decreased levels of pain, especially in the central area. In terms of pain interference in mood, the model showed high oscillatory Alpha signals in the frontal and central regions correlated with mood impairment due to pain. Our models confirm recent findings proposing that lower oscillatory frequencies, likely related to subcortical pain sources, may be associated with brain compensatory mechanisms and thus may be associated with decreased pain levels. On the other hand, higher frequencies, including alpha oscillations, may disrupt top-down compensatory mechanisms.
RESUMO
The Central-Pacific (CP) and Eastern-Pacific (EP) types of El Niño-Southern Oscillation (ENSO) and their ocean-atmosphere effect cause diverse responses in the hydroclimatological patterns of specific regions. Given the impact of ENSO diversity on the North Atlantic Oscillation (NAO), this study aimed to determine the relationship between the ENSO-NAO teleconnection and the ENSO-influenced precipitation patterns in Colombia during the December-February period. Precipitation data from 1981 to 2023, obtained from the Climate Hazards Group (CHIRPS), were analyzed using nine ENSO and NAO indices spanning from 1951 to 2023. Using Pearson's correlation and mutual information (MI) techniques, nine scenarios were devised, encompassing the CP and EP ENSO events, neutral years, and volcanic eruptions. The results suggest a shift in the direction of the ENSO-NAO relationship when distinguishing between the CP and EP events. Higher linear correlations were observed in the CP ENSO scenarios (r > 0.65) using the MEI and BEST indices, while lower correlations were observed when considering EP events along with the Niño 3 and Niño 1.2 indices. MI show difference in relationships based on the event type and the ENSO index used. Notably, an increase in the non-linear relationship was observed for the EP scenarios with respect to correlation. Both teleconnections followed a similar pattern, exhibiting a more substantial impact during CP ENSO events. This highlights the significance of investigating the impacts of ENSO on hydrometeorological variables in the context of adapting to climate change, while acknowledging the intricate diversity inherent to the ENSO phenomenon.
RESUMO
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.
RESUMO
Recent proliferation of GPS technology has transformed animal movement research. Yet, time-series data from this recent technology rarely span beyond a decade, constraining longitudinal research. Long-term field sites hold valuable historic animal location records, including hand-drawn maps and semantic descriptions. Here, we introduce a generalised workflow for converting such records into reliable location data to estimate home ranges, using 30 years of sleep-site data from 11 white-faced capuchin (Cebus imitator) groups in Costa Rica. Our findings illustrate that historic sleep locations can reliably recover home range size and geometry. We showcase the opportunity our approach presents to resolve open questions that can only be addressed with very long-term data, examining how home ranges are affected by climate cycles and demographic change. We urge researchers to translate historical records into usable movement data before this knowledge is lost; it is essential to understanding how animals are responding to our changing world.
Assuntos
Cebus , Mudança Climática , Animais , Costa Rica , Cebus/fisiologia , Comportamento de Retorno ao Território Vital , Sistemas de Informação Geográfica , Dinâmica Populacional , DemografiaRESUMO
The fluvial transport of dissolved inorganic carbon (DIC) is an important component of the global carbon cycle. Herein, we assessed the dynamics of DIC and the C stable isotopic composition (δ13CDIC) in a watershed with diversified land use in São Paulo State (Brazil), more specifically in the Sorocaba River basin (SRB) and considered the temporal and spatial scales. For this purpose, twelve fluvial samples at each sampling point (e.g., S1, S2, S3, S4 and S5) were collected in the SRB, from June 2009 to May 2010, which represented one complete hydrological cycle that included the extremes of the rainfall and discharge regimes. In addition, the δ13CDIC values were also characterized in the wet and dry season at all sampling points to verify their seasonal variability. The results reflected the seasonal variation in discharges, water temperatures, and electrical conductivities. Most of the DIC was transported in the wet season at all sampling points, where the less negative δ13CDIC values were characterized. The natural sources of DIC are associated with atmospheric/soil CO2 consumption. The anthropogenic impacts on both [DIC] and δ13CDIC are linked to untreated urban sewage that is discharged directly into the Sorocaba River, as well as to aquatic photosynthesis in the Itupararanga Reservoir. From 1970 to 2020, the modeling proposed in this study indicated that the annual flux of DIC (Friver) varied from 9.0 to 78.7 t km-2 a-1, confirming that the El Niño Southern Oscillation (ENSO) controlled Friver in the SRB, with higher and lower Friver values occurring during strong El Niño (EN) and La Niña (LN) years. The average Friver value was 20 t km-2 a-1, which is higher than those obtained in natural several temperate and tropical watersheds due to the influences of urban areas on [DIC] in the SRB.
RESUMO
Purpose: Chronic obstructive pulmonary disease (COPD) phenotypes may introduce different characteristics that need to be known to improve treatment. Respiratory oscillometry provides a detailed analysis and may offer insight into the pathophysiology of COPD. In this paper, we used this method to evaluate the differences in respiratory mechanics of COPD phenotypes. Patients and Methods: This study investigated a sample of 83 volunteers, being divided into control group (CG = 20), emphysema (n = 23), CB (n = 20) and asthma-COPD overlap syndrome (ACOS, n = 20). These analyses were performed before and after bronchodilator (BD) use. Functional capacity was evaluated using the GlittreADL test, handgrip strength and respiratory pressures. Results: Initially it was observed that oscillometry provided a detailed description of the COPD phenotypes, which was consistent with the involved pathophysiology. A correlation between oscillometry and functional capacity was observed (r=-0.541; p = 0.0001), particularly in the emphysema phenotype (r = -0.496, p = 0.031). BD response was different among the studied phenotypes. This resulted in an accurate discrimination of ACOS from CB [area under the receiver operating curve (AUC) = 0.84] and emphysema (AUC = 0.82). Conclusion: These results offer evidence that oscillatory indices may enhance the comprehension and identification of COPD phenotypes, thereby potentially improving the support provided to these patients.
Assuntos
Asma , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Oscilometria/métodos , Força da Mão , Volume Expiratório Forçado , Broncodilatadores/uso terapêutico , Fenótipo , Desempenho Físico FuncionalRESUMO
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Receptores de GABA-B , Receptores de GABA-B/metabolismo , Neurônios/metabolismo , Inibição Neural/fisiologia , Ácido gama-Aminobutírico , Receptores de GABA-A , Antagonistas GABAérgicosRESUMO
In this work, we present a theoretical model for domain wall (DW) oscillations in a curved magnetic nanowire with a constant curvature under the action of a uniaxial magnetic field. Our results show that the DW dynamics can be described as that of the mechanical pendulum, and both the NW curvature and the external magnetic field influence its oscillatory frequency. A comparison between our theoretical approach and experimental data in the literature shows an excellent agreement. The results presented here can be used to design devices demanding the proper control of the DW oscillatory motion in NWs.
RESUMO
BACKGROUND: Lung function analysis in Parkinson's disease (PD) is often difficult due to the demand for adequate forced expiratory maneuvers. Respiratory oscillometry exams require onlyquiet tidal breathing and provide a detailed analysis of respiratory mechanics. We hypothesized that oscillometry would simplify the diagnosis of respiratory abnormalitiesin PD and improve our knowledge about the pathophysiological changes in these patients. MATERIALS AND METHODS: This observational study includes 20 controls and 47 individuals with PD divided into three groups (Hoehn and Yahr Scale 1-1.5; H&Y scale 2-3 and PD smokers).The diagnostic accuracy was evaluated by investigating the area under the receiver operating characteristic curve (AUC). RESULTS: Initial stages are related to increased peripheral resistance (Rp; p = 0.001). In more advanced stages, a restrictive pattern is added, reflected by reductions in dynamic compliance (p < 0.05) and increase in resonance frequency (Fr; p < 0.001). Smoking PD patients presented increased Rp (p < 0.001) and Fr (p < 0.01). PD does not introduce changes in the central airways. Oscillometric changes were correlated with respiratory muscle weakness (R = 0.37, p = 0.02). Rp showed adequate accuracy in the detection of early respiratory abnormalities (AUC = 0.858), while in more advanced stages, Fr showed high diagnostic accuracy (AUC = 0.948). The best parameter to identify changes in smoking patients was Rp (AUC = 0.896). CONCLUSION: The initial stages of PD are related to a reduction in ventilation homogeneity associated with changes in peripheral airways. More advanced stages also include a restrictive ventilatory pattern. These changes were correlated with respiratory muscle weakness and were observed in mild and moderate stages of PD in smokers and non-smokers. Oscillometry may adequately identify respiratory changes in the early stages of PD and obtain high diagnostic accuracy in more advanced stages of the disease.
Assuntos
Doença de Parkinson , Transtornos Respiratórios , Humanos , Oscilometria , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Espirometria , Pulmão , Mecânica RespiratóriaRESUMO
Parkinson's disease (PD) is one of the leading neurodegenerative disorders. It is considered a movement disorder, although it is accepted that many nonmotor symptoms accompany the classic motor symptoms. PD exhibits heterogeneous and overlaying clinical symptoms, and the overlap of motor and nonmotor symptoms complicates the clinical diagnosis and management. Loss of modulation secondary to the absence of dopamine due to degeneration of the substantia nigra compacta produces changes in firing rates and patterns, oscillatory activity, and higher interneuronal synchronization in the basal ganglia-thalamus-cortex and nigrovagal network involvement in motor and nonmotor symptoms. These neurophysiological changes can be monitored by electrophysiological assessment. The purpose of this review was to summarize the results of neurophysiological changes, especially in the network oscillation in the beta-band level associated with parkinsonism, and to discuss the use of these methods to optimize the diagnosis and management of PD.
RESUMO
BACKGROUND: Exercise oscillatory ventilation (EOV) is considered an important variable for predicting poor prognosis in patients with heart failure (HF) with reduced left ventricular ejection fraction (HFrEF). However, there are no studies evaluating EOV presence in the coexistence chronic obstructive pulmonary disease (COPD) and HFrEF. AIMS: I) To compare the clinical characteristics of participants with coexisting HFrEF-COPD with and without EOV during cardiopulmonary exercise testing (CPET); and II) to identify the impact of EOV on mortality during follow-up for 35 months. METHODS: 50 stable HFrEF-COPD (EF<50%) participants underwent CPET and were followed for 35 months. The parametric Student's t-test, chi-square tests, linear regression model and Kaplan-Meier analysis were applied. RESULTS: We identified 13 (26%) participants with EOV and 37 (74%) without EOV (N-EOV) during exercise. The EOV group had worse cardiac function (LVEF: 30 ± 6% vs. N-EOV 40 ± 9%, p = 0.007), worse pulmonary function (FEV1: 1.04 ± 0.7 L vs. N-EOV 1.88 ± 0.7 L, p = 0.007), a higher mortality rate [7 (54%) vs. N-EOV 8 (27%), p = 0.02], higher minute ventilation/carbon dioxide production (VÌËE/ VÌË CO2) slope (42 ± 7 vs. N-EOV 36 ± 8, p = 0.04), reduced peak ventilation (L/min) (26.2 ± 16.7 vs. N-EOV 40.3 ± 16.4, p = 0.01) and peak oxygen uptake (mlO2 kg-1 min-1) (11.0 ± 4.0 vs. N-EOV 13.5 ± 3.4 mlâkg-1âmin-1, p = 0.04) when compared with N-EOV group. We found that EOV group had a higher risk of mortality during follow-up (long-rank p = 0.001) than patients with N-EOV group. CONCLUSION: The presence of EOV is associated with greater severity of coexisting HFrEF and COPD and a reduced prognosis. Assessment of EOV in participants with coexisting HFrEF-COPD, as a biomarker for both clinical status and prognosis may therefore be warranted.
RESUMO
Understanding what determines spatio-temporal changes in echinoderm assemblages from an integrative perspective that considers biodiversity, species evenness, and species' niches could permit superior community-scale characterizations of habitat resilience to disturbance. Such an approach was taken herein by tracking a Central Mexican Pacific echinoderm assemblage between 2012 and 2021, and higher richness, diversity, evenness, and functional entity counts were associated with more heterogeneous benthic assemblages. Echinoderm taxonomic composition was influenced by ENSO events, with higher functional diversity found during La Niña events. Conservation strategies should focus on species with unique functional traits to maintain the balance of coral community functionality.
Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Biodiversidade , EquinodermosRESUMO
The red crab, Pleuroncodes planipes, is a decapod crustacean abundant off the Pacific coast of the Baja California Peninsula. This species is caught and used in preparing animal feed, such as flour, particularly for aquaculture. Levels of calcium (Ca), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), nickel (Ni), phosphorus (P), and zinc (Zn) were measured in red crabs collected from three geographic zones during three cruises in different seasons. Significant differences were found in the levels of Ca, Cd, Cu, Fe, Mg, Ni, P, and Zn between the two El Niño years (cruises C1 and C3, based on a threshold of ±0.5 °C for the Oceanic Niño Index). The highest concentrations of most elements were observed in the south of the Baja California Peninsula, a highly productive area influenced by upwelling events. Our findings suggest that while environmental temperature plays a central role in the benthic or pelagic distribution of red crabs, their content and variability of trace and macro elements appear to be associated with the presence of oceanic conditions, such as upwelling and potential changes in the composition of their diet associated with the depth in which these crustaceans are collected.
RESUMO
Global burned area has declined by nearly one quarter between 1998 and 2015. Drylands contain a large proportion of these global fires but there are important differences within the drylands, for example, savannas and tropical dry forests (TDF). Savannas, a biome fire-prone and fire-adapted, have reduced the burned area, while the fire in the TDF is one of the most critical factors impacting biodiversity and carbon emissions. Moreover, under climate change scenarios TDF is expected to increase its current extent and raise the risk of fires. Despite regional and global scale effects, and the influence of this ecosystem on the global carbon cycle, little effort has been dedicated to studying the influence of climate (seasonality and extreme events) and socioeconomic conditions of fire regimen in TDF. Here we use the Global Fire Emissions Database and, climate and socioeconomic metrics to better understand long-term factors explaining the variation in burned area and biomass in TDF at Pantropical scale. On average, fires affected 1.4% of the total TDF' area (60,208 km2 ) and burned 24.4% (259.6 Tg) of the global burned biomass annually at Pantropical scales. Climate modulators largely influence local and regional fire regimes. Inter-annual variation in fire regime is shaped by El Niño and La Niña. During the El Niño and the forthcoming year of La Niña, there is an increment in extension (35.2% and 10.3%) and carbon emissions (42.9% and 10.6%). Socioeconomic indicators such as land-management and population were modulators of the size of both, burned area and carbon emissions. Moreover, fires may reduce the capability to reach the target of "half protected species" in the globe, that is, high-severity fires are recorded in ecoregions classified as nature could reach half protected. These observations may contribute to improving fire-management.
El área global quemada se redujo en casi una cuarta parte entre 1998 y 2015. Los bosques secos contienen una gran proporción de esos incendios globales, pero existen diferencias importantes dentro de ellos, por ejemplo, las sabanas y los bosques secos tropicales (SBC). Las sabanas, son un bioma propenso y adaptado al fuego, y que en los últimos años han reducido su área quemada. Mientras que el fuego en la SBC es uno de los factores más críticos que impactan la biodiversidad y las emisiones de carbono. Además, bajo escenarios de cambio climático, se espera que la SBC aumente su extensión actual y aumente el riesgo de incendios. A pesar de los efectos a escala regional y global, y la influencia de este ecosistema en el ciclo global del carbono, se le ha dedicado poco esfuerzo a estudiar la influencia del clima (estacionalidad y eventos extremos) y las condiciones socioeconómicas del régimen de incendios. Aquí usamos la base de datos global de emisiones de incendios y métricas climáticas y socioeconómicas para comprender mejor los factores a largo plazo que explican la variación en el área quemada y la biomasa a escala Pantropical. En promedio, los incendios afectaron el 1,4% del área total de la SBC (60 208 km2 ) y quemaron el 24,4% (259,6 Tg) de la biomasa global quemada anualmente a escala Pantropical. Los moduladores climáticos influyen en gran medida en los regímenes de incendios locales y regionales. La variación interanual del régimen de incendios está determinada por El Niño y La Niña. Durante El Niño y el año subsecuente de La Niña, se produce un incremento en la extensión (35,2% y 10,3%) y en las emisiones de carbono (42,9% y 10,6%). Los indicadores socioeconómicos como la gestión de la tierra y la población fueron moduladores del tamaño tanto del área quemada como de las emisiones de carbono. Además, los incendios pueden reducir la capacidad de alcanzar el objetivo de "protección de la mitad de las especies" en el mundo, es decir, los incendios de alta gravedad se registran en ecorregiones clasificadas como naturaleza que podría alcanzar la protección de la mitad de su biodiversidad. Estas observaciones pueden contribuir a mejorar la gestión de incendios.
Assuntos
Carbono , Ecossistema , Biomassa , Florestas , BiodiversidadeRESUMO
Scoliosis is a condition that affects the spine and causes chest rotation and trunk distortion. Individuals with severe deformities may experience dyspnea on exertion and develop respiratory failure. Respiratory oscillometry is a simple and non-invasive method that provides detailed information on lung mechanics. This work aims to investigate the potential of oscillometry in the evaluation of respiratory mechanics in patients with scoliosis and its association with physical performance. We analyzed 32 volunteers in the control group and 32 in the scoliosis group. The volunteers underwent traditional pulmonary function tests, oscillometry, and the 6-minute walk test (6MWT). Oscillometric analysis showed increased values of resistance at 4 Hz (R4, P<0.01), 12 Hz (R12, P<0.0001), and 20 Hz (R20, P<0.01). Similar analysis showed reductions in dynamic compliance (Cdyn, P<0.001) and ventilation homogeneity, as evaluated by resonance frequency (fr, P<0.001) and reactance area (Ax, P<0.001). Respiratory work, described by the impedance modulus, also showed increased values (Z4, P<0.01). Functional capacity was reduced in the group with scoliosis (P<0.001). A significant direct correlation was found between Cobb angle and R12, AX, and Z4 (P=0.0237, P=0.0338, and P=0.0147, respectively), and an inverse correlation was found between Cdyn and Cobb angle (P=0.0190). These results provided new information on respiratory mechanics in scoliosis and are consistent with the involved pathophysiology, suggesting that oscillometry may improve lung function tests for patients with scoliosis.
RESUMO
After sperm-oocyte fusion, intracytoplasmic rises of calcium (Ca) induce the release of zinc (Zn) out of the oocyte (Zn sparks). Both phenomena are known to play an essential role in the oocyte activation process. Our work aimed to explore different protocols for activating bovine and porcine oocytes using the novel zinc chelator 1,10-phenanthroline (PHEN) and to compare developmental rates and quality to bovine IVF and parthenogenetic ionomycin-induced embryos in both species. Different incubation conditions for the zinc chelator were tested, including its combination with ionomycin. Embryo quality was assessed by immunofluorescence of SOX2, SOX17, OCT4, and CDX2 and total cell number at the blastocyst stage. Even though blastocyst development was achieved using a zinc chelator in bovine, bypassing calcium oscillations, developmental rates, and blastocyst quality were compromised compared to embryos generated with sperm-induced or ionomycin calcium rise. On the contrary, zinc chelation is sufficient to trigger oocyte activation in porcine. Additionally, we determined the optimal exposure to PHEN for this species. Zinc chelation and artificial induction of calcium rise combined did not improve developmental competence. Our results contribute to understanding the role of zinc during oocyte activation and preimplantation embryo development across different mammalian species.
RESUMO
BACKGROUND: In this work, we developed many machine learning classifiers to assist in diagnosing respiratory changes associated with sarcoidosis, based on results from the Forced Oscillation Technique (FOT), a non-invasive method used to assess pulmonary mechanics. In addition to accurate results, there is a particular interest in their interpretability and explainability, so we used Genetic Programming since the classification is made with intelligible expressions and we also evaluate the feature importance in different experiments to find the more discriminative features. METHODOLOGY/PRINCIPAL FINDINGS: We used genetic programming in its traditional tree form and a grammar-based form. To check if interpretable results are competitive, we compared their performance to K-Nearest Neighbors, Support Vector Machine, AdaBoost, Random Forest, LightGBM, XGBoost, Decision Trees and Logistic Regressor. We also performed experiments with fuzzy features and tested a feature selection technique to bring even more interpretability. The data used to feed the classifiers come from the FOT exams in 72 individuals, of which 25 were healthy, and 47 were diagnosed with sarcoidosis. Among the latter, 24 showed normal conditions by spirometry, and 23 showed respiratory changes. The results achieved high accuracy (AUC > 0.90) in two analyses performed (controls vs. individuals with sarcoidosis and normal spirometry and controls vs. individuals with sarcoidosis and altered spirometry). Genetic Programming and Grammatical Evolution were particularly beneficial because they provide intelligible expressions to make the classification. The observation of which features were selected most frequently also brought explainability to the study of sarcoidosis. CONCLUSIONS: The proposed system may provide decision support for clinicians when they are struggling to give a confirmed clinical diagnosis. Clinicians may reference the prediction results and make better decisions, improving the productivity of pulmonary function services by AI-assisted workflow.
Assuntos
Aprendizado de Máquina , Sarcoidose , Humanos , Oscilometria , Espirometria , Máquina de Vetores de Suporte , Sarcoidose/diagnósticoRESUMO
This article documents the design, manufacture, and testing of a silicon inertial optical sensor for low-frequency (lower than 2 kHz) applications. Three accelerometer designs optimized by parameterization using Finite Element Analysis were considered. The accelerometers were manufactured and the one with the highest performance at low frequency was chosen for testing, which was attached to a steel package. The feasibility of using probes, based on micro-machined sensing elements, to measure mechanical vibrations with high resolution was also studied. The detection is performed with an air interferometer, eliminating the need for electric signals that are susceptible to electromagnetic interference and large temperature variations. From the fabrication technology using only a silicon wafer with both sides etched, the frequency response of the sensor, temperature operation (higher than 85 °C) and with a resolution of 17.5 nm, it was concluded that is achievable and feasible to design and manufacture an optical vibration sensor for potential harsh environments with a low cost.