Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Phytother Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873735

RESUMO

Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy-induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up-regulated the expression of angiogenic-related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/ß-catenin pathway. Subsequently, using ovariectomy-induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/ß-catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.

2.
Antioxidants (Basel) ; 13(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929108

RESUMO

Prostate cancer remains a significant global health concern, posing a substantial threat to men's well-being. Despite advancements in treatment modalities, the progression of prostate cancer still presents challenges, warranting further exploration of novel therapeutic strategies. In this study, osthole, a natural coumarin derivative, inhibited cell viability in cancer cells but not in the normal prostate cell line. Moreover, osthole disrupted cell cycle progression. Furthermore, osthole reduces mitochondrial respiration with mitochondrial membrane potential (ΔΨm) depolarization and reactive oxygen species (ROS) generation, indicating mitochondrial dysfunction. In particular, osthole-induced ROS generation was reduced by N-acetyl-L-cysteine (NAC) in prostate cancer. In addition, using calcium inhibitors (2-APB and ruthenium red) and endoplasmic reticulum (ER) stress inhibitor (4-PBA), we confirmed that ER stress-induced calcium overload by osthole causes mitochondrial dysfunction. Moreover, we verified that the osthole-induced upregulation of tiRNAHisGTG expression is related to mechanisms that induce permeabilization of the mitochondrial membrane and calcium accumulation. Regarding intracellular signaling, osthole inactivated the PI3K and ERK pathways while activating the expression of the P38, JNK, ER stress, and autophagy-related proteins. In conclusion, the results suggest that osthole can be used as a therapeutic or adjuvant treatment for the management of prostate cancer.

3.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708871

RESUMO

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Assuntos
Antibacterianos , Cumarínicos , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Cumarínicos/farmacologia , Cumarínicos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704108

RESUMO

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Assuntos
Estrogênios , Terapia por Exercício , Transtornos Mentais , Animais , Humanos , Estrogênios/metabolismo , Exercício Físico/fisiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/terapia , Receptores de Estrogênio/metabolismo , Transdução de Sinais
5.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691893

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Assuntos
Antibacterianos , Cumarínicos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Humanos , Relação Dose-Resposta a Droga , Camundongos , Tensoativos/farmacologia , Tensoativos/química , Tensoativos/síntese química
6.
Cell Biol Int ; 48(8): 1111-1123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38741282

RESUMO

Polycystic ovary syndrome (PCOS) is the primary cause of female infertility with a lack of universal therapeutic regimen. Although osthole exhibits numerous pharmacological activities in treating various diseases, its therapeutic effect on PCOS is undiscovered. The present study found that application of osthole improved the symptoms of PCOS mice through preventing ovarian granulosa cells (GCs) production of more estrogen and alleviating the liberation of pro-inflammatory cytokine interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha. Meanwhile, osthole enhanced ovarian antioxidant capacity and alleviated intracellular reactive oxygen species (ROS) accumulation with a concurrent attenuation for oxidative stress, while intervention of antioxidant enzymic activity and glutathione (GSH) synthesis neutralized the salvation of osthole on GCs secretory disorder and chronic inflammation. Further analysis revealed that osthole restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box O 1 (Foxo1) whose repression antagonized the amelioration of osthole on the insufficiency of antioxidant capacity and accumulation of ROS. Moreover, Nrf2 served as an intermedium to mediate the regulation of osthole on Foxo1. Additionally, osthole restricted the phosphorylation of IκBα and nuclear factor kappa B (NF-κB) subunit p65 by DHEA and weakened the transcriptional activity of NF-κB, but this effectiveness was abrogated by the obstruction of Nrf2 and Foxo1, whereas adjunction of GSH renewed the redemptive effect of osthole on NF-κB whose activation caused an invalidation of osthole in rescuing the aberration of GCs secretory function and inflammation response. Collectively, osthole might relieve the symptoms of PCOS mice via Nrf2-Foxo1-GSH-NF-κB pathway.


Assuntos
Cumarínicos , Proteína Forkhead Box O1 , Glutationa , Fator 2 Relacionado a NF-E2 , NF-kappa B , Estresse Oxidativo , Síndrome do Ovário Policístico , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Feminino , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , NF-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Modelos Animais de Doenças
7.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673809

RESUMO

Cnidium monnieri (L.) Cusson, a member of the Apiaceae family, is rich in coumarins, such as imperatorin and osthole. Cnidium monnieri fruit (CM) has a broad range of therapeutic potential that can be used in anti-bacterial, anti-cancer, and sexual dysfunction treatments. However, its efficacy in lowering blood pressure through vasodilation remains unknown. This study aimed to assess the potential therapeutic effect of CM 50% ethanol extract (CME) on hypertension and the mechanism of its vasorelaxant effect. CME (1-30 µg/mL) showed a concentration-dependent vasorelaxation on constricted aortic rings in Sprague Dawley rats induced by phenylephrine via an endothelium-independent mechanism. The vasorelaxant effect of CME was inhibited by blockers of voltage-dependent and Ca2+-activated K+ channels. Additionally, CME inhibited the vascular contraction induced by angiotensin II and CaCl2. The main active compounds of CM, i.e., imperatorin (3-300 µM) and osthole (1-100 µM), showed a concentration-dependent vasorelaxation effect, with half-maximal effective concentration values of 9.14 ± 0.06 and 5.98 ± 0.06 µM, respectively. Orally administered CME significantly reduced the blood pressure of spontaneously hypertensive rats. Our research shows that CME is a promising treatment option for hypertension. However, further studies are required to fully elucidate its therapeutic potential.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Cnidium , Etanol , Frutas , Furocumarinas , Hipertensão , Extratos Vegetais , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Vasodilatadores , Animais , Cnidium/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pressão Sanguínea/efeitos dos fármacos , Ratos , Frutas/química , Vasodilatadores/farmacologia , Masculino , Anti-Hipertensivos/farmacologia , Etanol/química , Furocumarinas/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Vasodilatação/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/química
8.
Int Immunopharmacol ; 133: 112131, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669945

RESUMO

BACKGROUND: Osthole is a natural active ingredient extracted from the traditional Chinese medicine Cnidium monnieri. It has been demonstrated to have anti-inflammatory, anti-fibrotic, and anti-hyperglycemic properties. However, its effect on diabetic kidney disease (DKD) remains uncertain. This study aims to assess the preventive and therapeutic effects of osthole on DKD and investigate its underlying mechanisms. METHODS: A streptozotocin/high-fat and high-sucrose diet induced Type 2 diabetic rat model was established. Metformin served as the positive drug control. Diabetic rats were treated with metformin or three different doses of osthole for 8 weeks. Throughout the treatment period, the progression of DKD was assessed by monitoring increases in urinary protein, serum creatinine, urea nitrogen, and uric acid, along with scrutinizing kidney pathology. Enzyme-linked immunosorbent assay (ELISA) was employed to detect inflammatory factors and oxidative stress levels. At the same time, immunohistochemical staining was utilized to evaluate changes in alpha-smooth muscle actin, fibronectin, E-cadherin, and apoptosis. The alterations in TGF-ß1/Smads signaling pathway were ascertained through western blot and immunofluorescence. Furthermore, we constructed a high glucose-stimulated HBZY-1 cells model to uncover its molecular protective mechanism. RESULTS: Osthole significantly reduced fasting blood glucose, insulin resistance, serum creatinine, uric acid, blood urea nitrogen, urinary protein excretion, and glomerular mesangial matrix deposition in diabetic rats. Additionally, significant improvements were observed in inflammation, oxidative stress, apoptosis, and fibrosis levels. The increase of ROS, apoptosis and hypertrophy in HBZY-1 cells induced by high glucose was reduced by osthole. Immunofluorescence and western blot results demonstrated that osthole down-regulated the TGF-ß1/Smads signaling pathway and related protein expression. CONCLUSION: Our findings indicate that osthole exhibits potential preventive and therapeutic effects on DKD. It deserves further investigation as a promising drug for preventing and treating DKD.


Assuntos
Cumarínicos , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Estresse Oxidativo , Transdução de Sinais , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Linhagem Celular , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Inflamação/tratamento farmacológico , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
9.
Poult Sci ; 103(5): 103579, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430778

RESUMO

Osthole (Ost) and icariin (Ica) are extracted from traditional Chinese medicine Cnidium monnieri and Epimedii Folium, respectively, and both exhibit estrogen-like biological activity. This study aimed to determine the efficacy and safety of combining Ost with Ica on the production performance of laying hens and to explore their possible mechanisms. The production performance, egg quality, residues of Ost and Ica in eggs, serum reproductive hormone levels, expression of ovarian reproductive hormone receptor, proliferation of granulosa cells in small yellow follicles (SYF), and progesterone secretion in large yellow follicles (LYF) related genes and proteins expression were detected. The results showed that adding 2 mg/kg Ost + 2 mg/kg Ica to the feed increased the laying rate, average egg weight, Haugh unit, and protein height of laying hens. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and progesterone (P4) levels increased, and the expression of ovarian estrogen receptor (ER), follicle-stimulating hormone receptor (FSHR), and progesterone receptor (PGR) mRNA was up-regulated. Additionally, the mRNA and protein levels of steroidogenesis acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450scc), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) increased in LYF. Furthermore, mRNA and protein levels of proliferating cell nuclear antigen (PCNA), cyclin E1, and cyclin A2 were up-regulated in SYF. The residues of Ost and Ica in egg samples were not detected by high-performance liquid chromatography (HPLC). In conclusion, dietary supplementation of Ost and Ica increased granulosa cells proliferation in SYF and increased P4 secretion in granulosa cells of LYF, ultimately improving the production performance of laying hens.


Assuntos
Ração Animal , Galinhas , Cumarínicos , Dieta , Suplementos Nutricionais , Flavonoides , Folículo Ovariano , Animais , Feminino , Galinhas/fisiologia , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Suplementos Nutricionais/análise , Ração Animal/análise , Dieta/veterinária , Folículo Ovariano/efeitos dos fármacos , Cumarínicos/administração & dosagem , Cumarínicos/farmacologia , Distribuição Aleatória
10.
Phytomedicine ; 128: 155375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507853

RESUMO

BACKGROUND: Osteoporosis (OP) is a prevalent chronic metabolic bone disease for which limited countermeasures are available. Cnidii Fructus (CF), primarily derived from Cnidium monnieri (L.) Cusson., has been tested in clinical trials of traditional Chinese medicine for the management of OP. Accumulating preclinical studies indicate that CF may be used against OP. MATERIALS AND METHODS: Comprehensive documentation and analysis were conducted to retrieve CF studies related to its main phytochemical components as well as its pharmacokinetics, safety and pharmacological properties. We also retrieved information on the mode of action of CF and, in particular, preclinical and clinical studies related to bone remodeling. This search was performed from the inception of databases up to the end of 2022 and included PubMed, China National Knowledge Infrastructure, the National Science and Technology Library, the China Science and Technology Journal Database, Weipu, Wanfang, the Web of Science and the China National Patent Database. RESULTS: CF contains a wide range of natural active compounds, including osthole, bergapten, imperatorin and xanthotoxin, which may underlie its beneficial effects on improving bone metabolism and quality. CF action appears to be mediated via multiple processes, including the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK), Wnt/ß-catenin and bone morphogenetic protein (BMP)/Smad signaling pathways. CONCLUSION: CF and its ingredients may provide novel compounds for developing anti-OP drugs.


Assuntos
Cnidium , Medicamentos de Ervas Chinesas , Frutas , Osteoporose , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Osteoporose/tratamento farmacológico , Cnidium/química , Frutas/química , Animais , Medicina Tradicional Chinesa , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , 5-Metoxipsoraleno , Remodelação Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Ligante RANK
11.
Chem Biodivers ; 21(4): e202400290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389159

RESUMO

Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.


Assuntos
Fator de Necrose Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Regulação para Cima , Lipopolissacarídeos/farmacologia , Neuroimunomodulação , Cumarínicos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
12.
Eur J Med Chem ; 268: 116252, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422703

RESUMO

The modification based on natural products is a practical way to find anti-inflammatory drugs. In this study, 26 osthole derivatives were synthesized, and their anti-inflammatory properties were evaluated. The preliminary activity study revealed that most osthole derivatives could effectively inhibit inflammatory cytokines IL-6 secretion in LPS stimulated mouse macrophages J774A.1. Compound 7m exhibited the most effective anti-inflammatory activity (RAW264.7 IL-6 IC50: 4.57 µM, 32 times more active than osthole) in vitro with no significant influence on cell proliferation. Additionally, the mechanistic analysis demonstrated that compound 7m could block MAPK signal transduction by inhibiting the phosphorylation of JNK and p38, thereby inhibiting the release of inflammatory cytokines. Moreover, in vivo functional investigations revealed that 7m could substantially reduce DSS-induced ulcerative colitis and LPS-induced acute lung injury, with good therapeutic effects. The pharmacokinetics and acute toxicity experiments proved the safety and reliability of 7min vivo. Overall, Compound 7m could further be studied as potential anti-inflammatory candidate.


Assuntos
Lesão Pulmonar Aguda , Colite Ulcerativa , Colite , Cumarínicos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Interleucina-6 , Reprodutibilidade dos Testes , Anti-Inflamatórios/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , NF-kappa B , Camundongos Endogâmicos C57BL , Colite/tratamento farmacológico
13.
Pestic Biochem Physiol ; 198: 105749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225092

RESUMO

Blue mold induced by Penicillium choerospondiatis is a primary cause of growth and postharvest losses in the fruit of Phyllanthus emblica. There is an urgent need to explore novel and safe fungicides to control this disease. Here, we demonstrated osthole, a natural coumarin compound isolated from Cnidium monnieri, exhibited a strong inhibitory effect on mycelia growth, conidial germination rate and germ tube length of P. choerospondiatis, and effectively suppressed the blue mold development in postharvest fruit of P. emblica. The median effective concentration of osthole was 9.86 mg/L. Osthole treatment resulted in cellular structural disruption, reactive oxygen species (ROS) accumulation, and induced autophagic vacuoles containing cytoplasmic components in fungal cells. Transcriptome analysis revealed that osthole treatment led to the differentially expressed genes mainly enriched in the cell wall synthesis, TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation. Moreover, osthole treatment led to increase genes expression involved in peroxisome, autophagy and endocytosis. Particularly, the autophagy pathway related genes (PcATG1, PcATG3, PcATG15, PcATG27, PcYPT7 and PcSEC18) were prominently up-regulated by osthole. Summarily, these results revealed the potential antifungal mechanism of osthole against P. choerospondiatis. Osthole has potentials to develop as a natural antifungal agent for controlling blue mold disease in postharvest fruits.


Assuntos
Antifúngicos , Cumarínicos , Penicillium , Antifúngicos/farmacologia , Cumarínicos/farmacologia , Perfilação da Expressão Gênica
14.
Mol Neurobiol ; 61(2): 1100-1118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682453

RESUMO

Neurodegenerative diseases constitute a major threat to human health and are usually accompanied by progressive structural and functional loss of neurons. Abnormalities in synaptic plasticity are involved in neurodegenerative disorders. Aberrant cell signaling cascades play a predominant role in the initiation, progress as well as in the severity of these ailments. Notch signaling is a pivotal role in the maintenance of neural stem cells and also participates in neurogenesis. PI3k/Akt cascade regulates different biological processes including cell proliferation, apoptosis, and metabolism. It regulates neurotoxicity and mediates the survival of neurons. Moreover, the activated BDNF/TrkB cascade is involved in promoting the transcription of genes responsible for cell survival and neurogenesis. Despite significant progress made in delineating the underlying pathological mechanisms involved and derangements in cellular metabolic promenades implicated in these diseases, satisfactory strategies for the clinical management of these ailments are yet to be achieved. Therefore, the molecules targeting these cell signaling cascades may emerge as useful leads in developing newer management strategies. Osthole is an important ingredient of traditional Chinese medicinal plants, often found in various plants of the Apiaceae family and has been observed to target these aforementioned mediators. Until now, no review has been aimed to discuss the possible molecular signaling cascades involved in osthole-mediated neuroprotection at one platform. The current review aimed to explore the interplay of various mediators and the modulation of the different molecular signaling cascades in osthole-mediated neuroprotection. This review could open new insights into research involving diseases of neuronal origin, especially the effect on neurodegeneration, neurogenesis, and synaptic plasticity. The articles gathered to compose the current review were extracted by using the PubMed, Scopus, Science Direct, and Web of Science databases. A methodical approach was used to integrate and discuss all published original reports describing the modulation of different mediators by osthole to confer neuroprotection at one platform to provide possible molecular pathways. Based on the inclusion and exclusion criteria, 32 articles were included in the systematic review. Moreover, literature evidence was also used to construct the biosynthetic pathway of osthole. The current review reveals that osthole promotes neurogenesis and neuronal functioning via stimulation of Notch, BDNF/Trk, and P13k/Akt signaling pathways. It upregulates the expression of various proteins, such as BDNF, TrkB, CREB, Nrf-2, P13k, and Akt. Activation of Wnt by osthole, in turn, regulates downstream GSK-1ß to inhibit tau phosphorylation and ß-catenin degradation to prevent neuronal apoptosis. The activation of Wnt and inhibition of oxidative stress, Aß, and GSK-3ß mediated ß-catenin degradation by osthole might also be involved in mediating the protection against neurodegenerative diseases. Furthermore, it also inhibits neuroinflammation by suppressing MAPK/NF-κB-mediated transcription of genes involved in the generation of inflammatory cytokines and NLRP-3 inflammasomes. This review delineates the various underlying signaling pathways involved in mediating the neuroprotective effect of osthole. Modulation of Notch, BDNF/Trk, MAPK/NF-κB, and P13k/Akt signaling pathways by osthole confers protection against neurodegenerative diseases. The preclinical effects of osthole suggest that it could be a valuable molecule in inspiring the development of new drugs for the management of neurodegenerative diseases and demands clinical studies to explore its potential. An effort has been made to unify the varied mechanisms and target sites involved in the neuroprotective effect of osthole. The comprehensive description of the molecular pathways in the present work reflects its originality and thoroughness. The reviewed literature findings may be extrapolated to suggest the role of othole as a "biological response modifier" which contributes to neuroprotection through kinase modulatory, immunomodulatory, and anti-oxidative activity, which is documented even at lower doses. The current review attempts to emphasize the gaps in the existing literature which can be explored in the future.


Assuntos
Cumarínicos , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1014538

RESUMO

AIM: To explore the mechanism of osthole on elderly spontaneously hypertensive rats. METHODS: 20-month-old spontaneously hypertensive rats (SHRs) and healthy Wistar-Kyoto (WKY) rats were purchased. SHRs were treated with osthole (i.g.) for 8 weeks. The systolic blood pressure and diastolic blood pressure of rats were monitored. Hematoxylin-eosin staining (H&E), periodic acid-schiff staining (PAS) and Masson staining were used to observe the pathological changes of rat kidney tissues. The activity of superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) in rat kidney was detected by ELISA kit. PI3K/Akt/mTOR signaling pathway related proteins were detected by western blot. RESULTS: Osthole reduced the systolic and diastolic blood pressure of SHRs, improved the histopathological changes of SHRs kidney, reduced the activity of MDA in SHRs kidney, and increased the activity of SOD and GSH. Osthole reduced the levels of p-PI3K, p-Akt and p-mTOR. CONCLUSION: Osthole reduces the activity of PI3K/Akt/mTOR signaling pathway and exerts a protective effect on renal oxidative stress injury in aged spontaneously hypertensive rats.

16.
J Agric Food Chem ; 71(47): 18301-18311, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966481

RESUMO

For high-value-added application of osthole derivatives as a pesticide candidate in crop protection, by the use of osthole as a lead compound, a series of novel acrylate derivatives of isopropenyl 2,3-dihydrobenzofurans were prepared by the successive bromination, rearrangement, and esterization reactions. Three-dimensional structures of four compounds were determined by single-crystal X-ray diffraction. The possible mechanism for construction of this new isopropenyl 2,3-dihydrobenzofuran skeleton from the osthole was presented. Against Plutella xylostella Linnaeus, compound 32 (R = PhCH2CH2) displayed 3.5-fold potent insecticidal activity of osthole. Against Tetranychus cinnabarinus Boisduval, compound 40 (LC50: 0.165 mg/mL; R = (CH2)13CH3) showed 8.3-fold pronounced acaricidal activity of osthole (LC50: 1.367 mg/mL); notably, its control effect can be comparable to that of the commercial acaricide spirodiclofen. Additionally, the scanning electron microscopy imaging method demonstrated that compound 40 can destroy the stratum corneum of T. cinnabarinus. Compound 40 can be further explored as a lead acaricidal agent.


Assuntos
Acaricidas , Inseticidas , Praguicidas , Tetranychidae , Animais , Praguicidas/farmacologia , Praguicidas/química , Estrutura Molecular , Agroquímicos/farmacologia , Inseticidas/farmacologia , Inseticidas/química , Acaricidas/química , Relação Estrutura-Atividade
17.
Pestic Biochem Physiol ; 196: 105612, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945229

RESUMO

Rice false smut, caused by the fungus Ustilaginoidea virens, is a destructive grain disease in rice-producing areas worldwide. To reveal the action mechanism of osthole against U. virens, the mycelial morphology, differential genes and metabolites of osthole-treated U. virens were determined using electron microscopy and multi-omics, respectively. The hyphae of osthole-treated U. virens were severely wrinkled and distorted with rough cell walls, uneven thickness, and protoplast aggregation. Calcium fluorescent white staining showed that osthole affected chitin synthesis in U. virens. The differential genes and metabolites in U. virens were significantly enriched in amino sugar and nucleotide sugar metabolism pathway. The expression of the acetylglucosamine phosphate mutase (AGM) gene (UvAGM1) and UDP-N-acetylglucosamine was significantly down regulated. The AGM of osthole-treated U. virens was 133.43 ng/mL, which was significantly lower than that of the control group (205.67 ng/mL). Osthole combined with the amino acid residue THR334 of AGM via hydrogen bonding. These results indicate that UvAGM1 may be a key candidate gene of osthole against U. virens. Overall, the results provide valuable information for the application of osthole to control rice false smut.


Assuntos
Oryza , Transcriptoma , Acetilglucosamina , Metaboloma , Quitina , Oryza/microbiologia , Doenças das Plantas/microbiologia
18.
Pestic Biochem Physiol ; 196: 105623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945232

RESUMO

Dendrobium officinale Kimura et Migo is a traditional Chinese herbal medicinal plant. However, the frequent occurrence of soft rot disease (SRD) is one of the most harmful diseases in D. officinale production in recent years, which can seriously affect its yield and quality. In this study, the major pathogenic fungus (SR-1) was isolated from D. officinale with typical symptoms of SRD, and was identified as Fusarium oxysporum through morphological and molecular identification. The biological activities of five natural products were determined against F. oxysporum using a mycelial growth inhibition assay. The results showed that osthole had the highest antifungal activity against F. oxysporum, with an EC50 value of 6.40 mg/L. Scanning electron microscopy (SEM) showed that osthole caused F. oxysporum mycelia to shrink and deform. Transmission electron microscopy (TEM) showed that the organelles were blurred and the cell wall was thickened in the presence of osthole. The sensitivity of F. oxysporum to calcofluor white (CFW) staining was significantly enhanced by osthole. Relative conductivity measurements and propidium iodide (PI) observation revealed that osthole had no significant effect on the cell membrane. Further experiments showed that the activity of chitinase and ß-1,3-glucanase were decreased, and expression levels of chitinase and ß-1,3-glucanase related genes were significantly down-regulated after treatment with osthole. In conclusion, osthole disrupted the cell wall integrity and dynamic balance of F. oxysporum, thereby inhibiting normal mycelial growth.


Assuntos
Produtos Biológicos , Quitinases , Fusarium , Produtos Biológicos/farmacologia , Parede Celular , Quitinases/metabolismo
19.
Biomed Pharmacother ; 169: 115940, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38007936

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread as a pandemic and caused damage to people's lives and countries' economies. The spike (S) protein of SARS-CoV-2 contains a cleavage motif, Arg-X-X-Arg, for furin and furin-like enzymes at the boundary of the S1/S2 subunits. Given that cleavage plays a crucial role in S protein activation and viral entry, the cleavage motif was selected as the target. Our previous fluorogenic substrate study showed that osthole, a coumarin compound, inhibits furin-like enzyme activity. In this study, we examined the potential activities of 15 compounds with a structure-activity relationship with osthole, and evaluated their protective ability against SARS-CoV-2 infection. Of the 15 compounds tested, compounds C1 and C2 exhibited the inhibitory effects of osthole against furin-like enzymatic activity; however, little or no inhibitory effects against furin activity were observed. We further examined the inhibition of SARS-CoV-2 activity by compounds C1 and C2 using a Vero E6 cell line that expresses the transmembrane protease serine 2 (TMPRSS2). Compounds C1, C2, and osthole effectively inhibited SARS-CoV-2 infection. Therefore, osthole and its derivatives can potentially be used as therapeutic agents against SARS-CoV-2.


Assuntos
COVID-19 , Furina , Humanos , SARS-CoV-2/metabolismo , Cumarínicos/farmacologia
20.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895813

RESUMO

Osthole (OST), a natural coumarin compound, has shown a significant inhibitory effect on corneal neovascularization (CNV). But, its effect on treating CNV is restricted by its water insolubility. To overcome this limitation, an OST-loaded microemulsion (OST-ME) was created to improve the drug's therapeutic effect on CNV after topical administration. The OST-ME formulation comprised Capryol-90 (CP-90), Cremophor® EL (EL-35), Transcutol-P (TSP) and water, and sodium hyaluronate (SH) was also included to increase viscosity. The OST-ME had a droplet size of 16.18 ± 0.02 nm and a low polydispersity index (0.09 ± 0.00). In vitro drug release from OST-ME fitted well to the Higuchi release kinetics model. Cytotoxicity assays demonstrated that OST-ME was not notably toxic to human corneal epithelial cells (HCECs), and the formulation had no irritation to rabbit eyes. Ocular pharmacokinetics studies showed that the areas under the concentration-time curves (AUC0-t) in the cornea and conjunctiva were 19.74 and 63.96 µg/g*min after the administration of OST-ME, both of which were 28.2- and 102.34-fold higher than those after the administration of OST suspension (OST-Susp). Moreover, OST-ME (0.1%) presented a similar therapeutic effect to commercially available dexamethasone eye drops (0.025%) on CNV in mouse models. In conclusion, the optimized OST-ME exhibited good tolerance and enhanced 28.2- and 102.34-fold bioavailability in the cornea and conjunctiva tissues compared with suspensions in rabbit eyes. The OST-ME is a potential ocular drug delivery for anti-CNV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...