Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Reprod Biomed Online ; 49(2): 103853, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38865783

RESUMO

RESEARCH QUESTION: How is the production of progesterone (P4) and 17-hydroxy-P4 (17-OH-P4) regulated between theca cells and granulosa cells during the follicular phase, during ovulation and after transformation into a corpus luteum? DESIGN: Three cohorts were examined: (i) 31 women undergoing natural and stimulated cycles, with serum hormone measurements taken every 3 days; (ii) 50 women undergoing ovarian stimulation, with hormone concentrations in serum and follicular fluid assessed at five time points during final follicle maturation; and (iii) 12 women undergoing fertility preservation, with hormone concentrations evaluated via the follicular fluid of small antral follicles. RESULTS: In the early follicular phase, theca cells primarily synthesized 17-OH-P4 while granulosa cells produced limited P4, maintaining the P4:17-OH-P4 ratio <1. As follicles reached follicle selection at a diameter of approximately 10 mm, P4 synthesis in granulosa cells was up-regulated, but P4 was mainly accumulated in follicular fluid. During final maturation, enhanced activity of the enzyme HSD3B2 in granulosa cells enhanced P4 production, with the P4:17-OH-P4 ratio increasing to >1. The concentration of 17-OH-P4 in the luteal phase was similar to that in the follicular phase, but P4 production increased in the luteal phase, yielding a P4:17-OH-P4 ratio significantly >1. CONCLUSIONS: The P4:17-OH-P4 ratio reflects the activity of granulosa cells and theca cells during the follicular phase and following luteinization in the corpus luteum. Managing the function of granulosa cells is key for reducing the concentration of P4 during ovarian stimulation, but the concerted action of FSH and LH on granulosa cells during the second half of the follicular phase makes this complex.

2.
Front Cell Dev Biol ; 12: 1384047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827527

RESUMO

Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.

3.
Reprod Biol Endocrinol ; 22(1): 60, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778396

RESUMO

BACKGROUND: Reproduction in women is at risk due to exposure to chemicals that can disrupt the endocrine system during different windows of sensitivity throughout life. Steroid hormone levels are fundamental for the normal development and function of the human reproductive system, including the ovary. This study aims to elucidate steroidogenesis at different life-stages in human ovaries. METHODS: We have developed a sensitive and specific LC-MS/MS method for 21 important steroid hormones and measured them at different life stages: in media from cultures of human fetal ovaries collected from elective terminations of normally progressing pregnancy and in media from adult ovaries from Caesarean section patients, and follicular fluid from women undergoing infertility treatment. Statistically significant differences in steroid hormone levels and their ratios were calculated with parametric tests. Principal component analysis (PCA) was applied to explore clustering of the ovarian-derived steroidogenic profiles. RESULTS: Comparison of the 21 steroid hormones revealed clear differences between the various ovarian-derived steroid profiles. Interestingly, we found biosynthesis of both canonical and "backdoor" pathway steroid hormones and corticosteroids in first and second trimester fetal and adult ovarian tissue cultures. 17α-estradiol, a less potent naturally occurring isomer of 17ß-estradiol, was detected only in follicular fluid. PCA of the ovarian-derived profiles revealed clusters from: adult ovarian tissue cultures with relatively high levels of androgens; first trimester and second trimester fetal ovarian tissue cultures with relatively low estrogen levels; follicular fluid with the lowest androgens, but highest corticosteroid, progestogen and estradiol levels. Furthermore, ratios of specific steroid hormones showed higher estradiol/ testosterone and estrone/androstenedione (indicating higher CYP19A1 activity, p < 0.01) and higher 17-hydroxyprogesterone/progesterone and dehydroepiandrosterone /androstenedione (indicating higher CYP17A1 activity, p < 0.01) in fetal compared to adult ovarian tissue cultures. CONCLUSIONS: Human ovaries demonstrate de novo synthesis of non-canonical and "backdoor" pathway steroid hormones and corticosteroids. Elucidating the steroid profiles in human ovaries improves our understanding of physiological, life-stage dependent, steroidogenic capacity of ovaries and will inform mechanistic studies to identify endocrine disrupting chemicals that affect female reproduction.


Assuntos
Feto , Ovário , Humanos , Feminino , Ovário/metabolismo , Adulto , Gravidez , Feto/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/análise , Espectrometria de Massas em Tandem , Líquido Folicular/metabolismo , Líquido Folicular/química , Estradiol/metabolismo , Cromatografia Líquida
4.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068943

RESUMO

Gonadotropins, including human chorionic gonadotropin (hCG), are used to induce ovulation, but they have a number of side effects, including ovarian hyperstimulation syndrome (OHSS). A possible alternative is allosteric luteinizing hormone (LH)/hCG receptor agonists, including the compound TP4/2 we developed, which remains active when administered orally. The aim was to study the effectiveness of TP4/2 (orally, 40 mg/kg) as an ovulation inducer in FSH-stimulated immature female rats, compared with hCG (s.c., 15 IU/rat). TP4/2 stimulated progesterone production and corpus luteum formation; time-dependently increased the ovarian expression of steroidogenic genes (Star, Cyp11a1, Cyp17a1) and genes involved in ovulation regulation (Adamts-1, Cox-2, Egr-1, Mt-1); and increased the content of metalloproteinase ADAMTS-1 in the ovaries. These effects were similar to those of hCG, although in some cases they were less pronounced. TP4/2, in contrast to hCG, maintained normal LH levels and increased the ovarian expression of the LH/hCG receptor gene, indicating preservation of ovarian sensitivity to LH, and did not cause a sustained increase in expression of vascular endothelial growth factor-A involved in OHSS. Thus, TP4/2 is an effective ovulation inducer that, unlike hCG, has a lower risk of OHSS and ovarian LH resistance due to its moderate stimulating effect on steroidogenesis.


Assuntos
Hormônio Luteinizante , Síndrome de Hiperestimulação Ovariana , Feminino , Ratos , Humanos , Animais , Hormônio Luteinizante/metabolismo , Receptores do LH/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ovulação , Hormônios Esteroides Gonadais/farmacologia , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/uso terapêutico , Síndrome de Hiperestimulação Ovariana/tratamento farmacológico , Síndrome de Hiperestimulação Ovariana/metabolismo
5.
Animals (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958056

RESUMO

After estrus, when mature follicles fail to ovulate, they may further develop to form follicular cysts, affecting the normal function of ovaries, reducing the reproductive efficiency of dairy cows and causing economic losses to cattle farms. However, the key points of ovarian follicular cysts pathogenesis remain largely unclear. The purpose of the current research was to analyze the formation mechanism of ovarian follicular cysts from hormone and gene expression profiles. The concentrations of progesterone (P4), estradiol (E2), insulin, insulin-like growth factor 1 (IGF1), leptin, adrenocorticotropic hormone (ACTH) and ghrelin in follicle fluid from bovine follicular cysts and normal follicles were examined using enzyme-linked immunosorbent assay (ELISA) or 125I-labeled radioimmunoassay (RIA); the corresponding receptors' expression of theca interna cells was tested via quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the mRNA expression profiling was analyzed via RNA sequencing (RNA-seq). The results showed that the follicular cysts were characterized by significant lower E2, insulin, IGF1 and leptin levels but elevated ACTH and ghrelin levels compared with normal follicles (p < 0.05). The mRNA expressions of corresponding receptors, PGR, ESR1, ESR2, IGF1R, LEPR, IGFBP6 and GHSR, were similarly altered significantly (p < 0.05). RNA-seq identified 2514 differential expressed genes between normal follicles and follicular cysts. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis linked the ovarian steroidogenesis pathway, especially the STAR, 3ß-HSD, CYP11A1 and CYP17A1 genes, to the formation of follicular cysts (p < 0.01). These results indicated that hormone metabolic disorders and abnormal expression levels of hormone synthesis pathway genes are associated with the formation of bovine ovarian follicular cysts.

6.
Front Endocrinol (Lausanne) ; 14: 1268248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964966

RESUMO

Introduction: Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods: Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results: Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion: This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.


Assuntos
Folículo Ovariano , Progesterona , Humanos , Feminino , Progesterona/metabolismo , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Ovário , Células Tecais/metabolismo
7.
Mol Hum Reprod ; 29(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-36892447

RESUMO

Semaphorins are a family of evolutionarily conserved morphogenetic molecules that were initially found to be associated with axonal guidance. Semaphorin 4C (Sema4C), a member of the fourth subfamily of semaphorins, has been demonstrated to play multifaceted and important roles in organ development, immune regulation, tumor growth, and metastasis. However, it is completely unknown whether Sema4C is involved in the regulation of ovarian function. We found that Sema4C was widely expressed in the stroma, follicles, and corpus luteum of mouse ovaries, and its expression was decreased at distinct foci in ovaries of mice of mid-to-advanced reproductive age. Inhibition of Sema4C by the ovarian intrabursal administration of recombinant adeno-associated virus-shRNA significantly reduced oestradiol, progesterone, and testosterone levels in vivo. Transcriptome sequencing analysis showed changes in pathways related to ovarian steroidogenesis and the actin cytoskeleton. Similarly, knockdown of Sema4C by siRNA interference in mouse primary ovarian granulosa cells or thecal interstitial cells significantly suppressed ovarian steroidogenesis and led to actin cytoskeleton disorganization. Importantly, the cytoskeleton-related pathway RHOA/ROCK1 was simultaneously inhibited after the downregulation of Sema4C. Furthermore, treatment with a ROCK1 agonist after siRNA interference stabilized the actin cytoskeleton and reversed the inhibitory effect on steroid hormones described above. In conclusion, Sema4C may play an important role in ovarian steroidogenesis through regulation of the actin cytoskeleton via the RHOA/ROCK1 signaling pathway. These findings shed new light on the identification of dominant factors involved in the endocrine physiology of female reproduction.


Assuntos
Ovário , Semaforinas , Animais , Feminino , Camundongos , Citoesqueleto de Actina/metabolismo , Ovário/metabolismo , RNA Interferente Pequeno/genética , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais
8.
Biomedicines ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884951

RESUMO

Prior work has demonstrated that murine ovarian explants and isolated ovarian follicles can recapitulate human-like 28-day cycles in vitro with normal patterns of estradiol and progesterone secretion in response to gonadotropin stimulation. The objective of this study was to manipulate the gonadotropin stimulation protocol to mimic polycystic ovary syndrome (PCOS) and assess the resulting changes in ovarian steroidogenesis. A secondary aim of the study was to develop a high-throughput, sensitive, and specific liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure seven steroid hormones (estrone, estradiol, progesterone, testosterone, androstenedione, dehydroepiandrosterone, and dihydrotestosterone) in conditioned culture media. Ovaries were harvested from 12-day-old CD-1 mice and cultured for 28 days, with ovulation induction on culture day 14. Media were supplemented human chorionic gonadotropin (hCG, a luteinizing hormone analog) and follicle stimulating hormone (FSH) at ratios of 1:0 (standard media), 1:1 (physiologic ratio), and 3:1 (PCOS-like ratio). Ovaries cultured in PCOS-like media displayed hyperandrogenism and impaired ovulation, two key features of a PCOS-like phenotype. Taken together, this first-of-its-kind presentation of hormone levels from single tissues creates a map of the enzymatic steps most acutely affected by gonadotropin dysregulation and may provide opportunities for assessing other potential insults in PCOS pathogenesis.

9.
Reprod Biol ; 22(3): 100669, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772190

RESUMO

Follicle-stimulating hormone (FSH) is crucial for ovarian folliculogenesis and thus essential for female fertility. Here, we developed a novel FSH vaccine based on the tandem of a 13-amino acid receptor-binding epitope of FSHß (FSHß13AA-T) and used a mouse model to test its efficacy in female fertility regulation. Compared to placebo-immunized controls, FSHß13AA-T vaccination: induced a marked (P < 0.05) antibody generation; reduced (P < 0.05) serum concentrations of FSH, inhibin B and 17ß-estradiol; disrupted (P < 0.05) normal estrous cyclicity; delayed (P = 0.08) establishment of pregnancy; blocked (P < 0.05) folliculogenesis; and reduced (P < 0.05) litter size. Mechanistically, FSH vaccination reduced (P < 0.05) ovarian estrogen production by decreasing Lhcgr, Cyp19a1 and HSD3ß1 expression, and suppressed ovarian follicular development by decreasing ovarian Fshr, Inhα, Foxo3a, Bmp15 and Cdh1 expression. Overall, vaccination of female mice with FSHß13AA-T substantially disrupted FSH-dependent ovarian steroidogenesis and folliculogenesis, and caused subfertility. Therefore, vaccines based on FSHß13AA-T have potential as anti-fertility/contraceptive agents in females.


Assuntos
Fertilidade/fisiologia , Subunidade beta do Hormônio Folículoestimulante , Animais , Epitopos , Feminino , Hormônio Foliculoestimulante , Camundongos , Receptores de Aminoácido , Vacinação
10.
Expert Opin Drug Metab Toxicol ; 18(2): 123-133, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35472446

RESUMO

INTRODUCTION: Myo-inositol (MI) and d-chiro-inositol (DCI) play a key role in ovarian physiology, as they are second messengers of insulin and gonadotropins. Ex-vivo and in-vitro experiments demonstrate that both isomers are deeply involved in steroid biosynthesis, and that reduced MI-to-DCI ratios are associated with pathological imbalance of sex hormones. AREAS COVERED: This expert opinion provides an overview of the physiological distribution of MI and DCI in the ovarian tissues, and a thorough insight of their involvement into ovarian steroidogenesis. Insulin resistance and compensatory hyperinsulinemia dramatically reduce the MI-to-DCI ratio in the ovaries, leading to gynecological disorders characterized by hyperandrogenism, altered menstrual cycle and infertility. EXPERT OPINION: Available evidence indicates that MI and DCI have very specific physiological roles and, seemingly, physiological MI-to-DCI ratios in the ovaries are crucial to maintain the correct homeostasis of steroids. Inositol treatments should be evaluated on the patients' specific conditions and needs, as long-term supplementation of high doses of DCI may cause detrimental effects on the ovarian functionality. In addition, the effects of inositol therapy on the different PCOS phenotypes should be further investigated in order to better tailor the supplementation.


Assuntos
Doenças dos Genitais Femininos , Síndrome do Ovário Policístico , Feminino , Doenças dos Genitais Femininos/tratamento farmacológico , Humanos , Inositol , Insulina/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico
11.
Theriogenology ; 181: 161-169, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101680

RESUMO

Follicle stimulating hormone (FSH) has been widely reported to influence ovarian follicular development, and miRNAs play a significant role in mammalian follicular development by regulating their target genes. Therefore, it is of interest to explore the roles of miRNAs in sheep follicular development during FSH stimulation. In the current study, we constructed miRNA expression profiles of small follicles (SFs, prerecruitment stage), medium follicles (MFs, dominance stage), and large follicles (LFs, maturation stage). Three and 50 significant differentially expressed miRNAs (DEMs) were identified in the MF vs. SF and LF vs. SF comparisons, respectively, and none were identified in the LF vs. MF comparison. Oar-miR-10a was significantly downregulated in MFs compared with SFs. In LFs compared with SFs, miR-212-3p, miR-212-5p and miR-202-5p were significantly upregulated, and miR-27a-3p, miR-181a-5p, miR-204-5p, and miR-182-5p were significantly downregulated. Furthermore, we predicted the target genes of significant DEMs and performed functional enrichment analyses of these target genes. Analyses of KEGG pathways and GO terms showed that the putative target genes were significantly enriched in ovarian steroidogenesis, glutathione metabolism, positive regulation of cell differentiation, positive regulation of cell development, and cellular response to oxygen-containing compounds. Analyses of miRNA-gene regulatory networks suggested that miR-181a-5p-CYP11A1, (miR-27a-3p and miR-129-5p)-LDLR, (miR-212-3p and miR-212-5p)-EFNA5, (miR-181a-5p, miR-182-5p, and miR-27a-3p)-INHBA, and miR-182-5p-SOD2 might be involved in follicular development. The present study provides basic data and suggests research directions for further exploration of the roles of miRNAs in sheep follicular development under FSH stimulation.


Assuntos
Hormônio Foliculoestimulante , MicroRNAs , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , MicroRNAs/genética , Folículo Ovariano , Ovinos
12.
Dokl Biochem Biophys ; 507(1): 345-349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786999

RESUMO

Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are widely used for the treatment of reproductive disorders and for controlled ovulation induction, but their use is limited by side effects. Allosteric agonists of the LH/hCG receptor, including thieno[2,3-d]thienopyrimidine TP03 developed by us, can become an alternative. TP03 (50 mg/rat, i.p.) when administered to immature female rats treated 48 h before with Follimag has been shown to increase progesterone levels (maximum 8 h post-treatment) and induce ovulation, as indicated by the appearance at 24 h corpus luteum (8.6 ± 0.5 per ovary). In terms of its activity, TP03 is comparable to hCG, although it acts more moderately. In the ovaries, unlike hCG, TP03 does not lead to an increase in the expression of vascular endothelial growth factor, which can cause ovarian hyperstimulation syndrome. Thus, TP03 is a promising drug as an ovulation inducer and ovarian steroidogenesis stimulator.


Assuntos
Receptores do LH , Fator A de Crescimento do Endotélio Vascular , Ratos , Feminino , Humanos , Animais , Receptores do LH/agonistas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Ovário/metabolismo , Ovulação , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/metabolismo , Progesterona/farmacologia
13.
J Ovarian Res ; 14(1): 125, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34563259

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The etiopathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health in women's lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attributed to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian hyperandrogenism which can result in PCOS.


Assuntos
Síndrome do Ovário Policístico/genética , Feminino , Predisposição Genética para Doença , Humanos , Síndrome do Ovário Policístico/patologia , Polimorfismo Genético
14.
Biol Reprod ; 104(6): 1347-1359, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33693648

RESUMO

Overloaded iron can deposit in the reproductive system and impair ovarian function. But few studies have identified the exact effect of overloaded iron on the endocrine function and fertility capacity in female mice. Here, we established iron-overloaded mouse models by intraperitoneal injection of iron dextran to adult female C57BL/6J mice at 0.1 g/kg (LF group), 0.5 g/kg (MF group), and 1.0 g/kg (HF group) concentrations once a week for eight consecutive weeks. We found that overloaded iron resulted in smaller ovaries, as well as accumulated oxidative damages. The endocrine function and follicle development were also impeded in the MF and HF groups. The 10-month breeding trial indicated that (1) Low concentration of iron (0.1 g/kg) wasn't detrimental to the ovary; (2) Middle concentration of iron (0.5 g/kg) impeded the childbearing process, though it could be recovered following the iron excretion; and (3) High concentration of iron (1.0 g/kg) damaged the fertility, even gave rise to sterility. Yet for those fertile mice, litter number and litter size were smaller and the ovarian reserve of their offspring was impaired. Transcriptome profiling results indicated that overloaded iron could compromise ovarian function by disrupting ovarian steroidogenesis, interfering with ovarian microenvironment, and inhibiting Wnt signaling. Taken together, we have demonstrated the effect that chronic concentration-dependent iron overload exerted on mouse ovarian function, which may act as a preliminary basis for further mechanism and intervention investigations.


Assuntos
Sobrecarga de Ferro/metabolismo , Reserva Ovariana/efeitos dos fármacos , Ovário/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ovário/efeitos dos fármacos
15.
Vet Med Sci ; 7(4): 1303-1315, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780162

RESUMO

BACKGROUND: Litter size is an important factor that significantly affects the development of the sheep industry. Our previous TMT proteomics analysis found that three key proteins in the ovarian steroidogenesis pathway, STAR, HSD3B1, and CYP11A1, may affect the litter size trait of Small Tail Han sheep. OBJECTIVE: The purpose of this study was to better understand the relationship between polymorphisms of these three genes and litter size. MATERIAL AND METHOD: Sequenom MassARRAY detected genetic variance of the three genes in 768 sheep. Real-time qPCR of the three genes was used to compare their expression in monotocous and polytocous sheep in relevant tissues. Finally, bioinformatics analysis predicted the protein sequences of the different SNP variants. RESULT: Association analysis showed that there was a significant difference in litter size among the genotypes at two loci of the CYP11A1 gene (p < 0.05), but no significant difference was observed in litter size among all genotypes at all loci of the STAR and HSD3B1 genes (p > 0.05). However, STAR expression was significantly different in polytocous and monotocous sheep in the pituitary (p < 0.01). Tissue-specific expression in the ovary was observed for HSD3B1 (p < 0.05), but its expression was not different between polytocous and monotocous sheep. Bioinformatics analysis showed that the g.33217408C > T mutation of CYP11A1 resulted in major changes to the secondary and tertiary structures. In contrast, gene polymorphisms in STAR and HSD3B1 had minimal impacts on their protein structures. DISCUSSION: This may explain why the CYP11A1 variant impacted litter size while the others did not. The single nucleotide polymorphism of the CYP11A1 gene would serve as a good molecular marker when breeding to increase litter size in sheep. Our study provides a basis for further revealing the function of the ovarian steroidogenesis pathway in sheep reproduction and sheep breeding.


Assuntos
Expressão Gênica , Ovário/metabolismo , Polimorfismo Genético , Carneiro Doméstico/genética , Esteroides/biossíntese , Animais , Feminino , Redes e Vias Metabólicas , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/metabolismo
16.
Theriogenology ; 160: 95-101, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189079

RESUMO

Chemerin has been shown to participate in the regulation of ovarian steroidogenesis in women, rats, mice and cows. Even though pigs are one of the most economically important livestock species, there is a general lack of data on the effects of chemerin in this species. Therefore, this study aimed to investigate the in vitro effect of chemerin on basal and luteinizing hormone/follicle-stimulating hormone- and/or insulin-induced secretion of progesterone (P4), androstenedione (A4), testosterone (T), estrone (E1) and estradiol (E2) by the porcine ovarian cells during the estrous cycle and early pregnancy. Granulosa (G) and theca interna (Th) cells were collected from gilts during the follicular phase. Luteal cells (Lc) were harvested from pigs during the early-luteal, mid-luteal and late-luteal phases, as well as during the maternal recognition of pregnancy and beginning of implantation. Cells were preincubated for 24 h (G and Th) or 48 h (Lc) and subsequently incubated for 24 h with or without treatments. Then, the concentrations of steroid hormones in the culture media were determined by radioimmunoassay. The results were analyzed by one-way analysis of variance, followed by Duncan's post hoc test. The study demonstrated that chemerin exerts a modulatory effect on de novo synthesis of steroid hormones in pigs. Chemerin stimulated basal and/or induced secretion of P4 by the porcine Lc during the early-, mid- and late-luteal phases of the estrous cycle, as well as during both studied periods of early pregnancy. Further, chemerin caused an increase in the induced secretion of A4, T and E1 by the porcine Lc during the maternal recognition of pregnancy. Moreover, chemerin inhibited induced secretion of E2 by the porcine Lc during the early-, mid- and late-luteal phases, as well as during the maternal recognition of pregnancy. During the follicular phase, chemerin stimulated basal and induced secretion of P4 and inhibited induced secretion of E2 by the porcine G, as well as decreased induced secretion of A4, and T by the porcine Th. Therefore, chemerin appears to be a modulator of ovarian steroidogenesis in pigs, whereas its varied effects (stimulatory or inhibitory) on the secretion of steroid hormones may be due to the heterogeneity of factors regulating ovarian functions, possible interactions between these factors, and specific processes related to the ovarian physiology during different phases of the estrous cycle/pregnancy. Chemerin may also affect ovarian steroidogenesis in pigs by regulating the expression/activity of steroidogenic enzymes.


Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Animais , Bovinos , Quimiocinas , Estradiol , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Ovário , Gravidez , Progesterona , Ratos , Suínos
17.
Domest Anim Endocrinol ; 74: 106563, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129139

RESUMO

Sheep is usually a monovular animal; superovulation technology is used to increase the number of offspring per individual and shorten generation intervals. To date, mature FSH superstimulatory treatments have been successfully used in sheep breeding, but much remains unknown about genes, pathways, and biological functions involved in follicular development. Therefore, in this study, we performed transcriptome profiling of small follicles (SFs; 2-2.5 mm), medium follicles (MFs; 3.5-4.5 mm), and large follicles (LFs; > 6 mm) in Mongolian ewes after FSH superstimulation. Furthermore, we identified differentially expressed genes and performed Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology enrichment analyses in 3 separate pairwise comparisons. We found that ovarian steroidogenesis was significantly enriched in the SFs versus MFs analysis; the associated genes, cytochrome P450 family 19 (CYP19) and Hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1), were significantly upregulated. Moreover, proline metabolism, glutathione metabolism, and PPAR signaling pathways were significantly enriched in the LFs versus SFs analysis; the associated genes, glutamate-cysteine ligase modifier subunit (GCLM) and cystathionine gamma-lyase (CTH), were significantly upregulated, whereas peroxisome proliferator-activated receptor gamma (PPARγ) was significantly downregulated. In summary, our study provides basic data and possible biological direction to further explore the molecular mechanism of sheep follicular development after FSH superstimulation.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Folículo Ovariano/efeitos dos fármacos , Animais , Aromatase/genética , Aromatase/metabolismo , Cloprostenol/farmacologia , Feminino , Fármacos para a Fertilidade Feminina/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Luteolíticos/farmacologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , PPAR gama/genética , PPAR gama/metabolismo , Progesterona Redutase/genética , Progesterona Redutase/metabolismo , Reprodutibilidade dos Testes , Ovinos , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo
18.
J Assist Reprod Genet ; 37(6): 1477-1488, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32363564

RESUMO

PURPOSE: Little is known about the role of the superior ovarian nerve (SON) in follicular development during the estrus cycle. The aim of the present study was to analyze the role of neural signals arriving through the SON at the ovaries in the regulation of follicular development and ovarian steroid secretion in diestrus 1 of cyclic rats. METHODS: Cyclic rats were subjected to left, right, or bilateral SON sectioning or to unilateral or bilateral laparotomy at diestrus 1 at 11:00 h. Animals were sacrificed 24 h after surgery. RESULTS: Compared to laparotomized animals, unilateral SON sectioning decreased the number of preovulatory follicles, while bilateral SON sectioning resulted in a decreased number of atretic preantral follicles. An important observation was the presence of invaginations in the follicular wall of large antral and preovulatory follicles in animals with denervation. Furthermore, left SON sectioning increased progesterone levels but decreased testosterone levels, which are effects that were not observed in animals that were subjected to right denervation. CONCLUSIONS: At 11:00 h of diestrus 1, the SON was found to stimulate follicle development, possibly via neural signals, such as noradrenaline and/or vasoactive intestinal peptide, and this stimulation induced the formation of follicle-stimulating hormone receptors. The role of the SON in the regulation of ovarian steroid secretion is asymmetric: the left SON inhibits the regulation of progesterone and stimulates testosterone secretion, and the right nerve does not participate in these processes.


Assuntos
Diestro/fisiologia , Estro/fisiologia , Folículo Ovariano/fisiologia , Ovário/inervação , Animais , Modelos Animais de Doenças , Feminino , Hormônio Foliculoestimulante/farmacologia , Humanos , Laparotomia , Hormônio Luteinizante/farmacologia , Tecido Nervoso/patologia , Tecido Nervoso/cirurgia , Folículo Ovariano/inervação , Folículo Ovariano/cirurgia , Ovário/fisiologia , Ovário/cirurgia , Ovulação/fisiologia , Ratos , Testosterona/farmacologia
19.
J Nutr Biochem ; 71: 132-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349120

RESUMO

Consumption of unhealthy, energy-dense palatable food during early age leads to obesity in children and the onset of obesity during childhood has a profound effect on the reproductive health of women. In this study, the mechanism underlying diet-induced obesity on ovarian dysfunction was studied by exposing rats to cafeteria diet (CAFD) for two different durations. For that purpose, 21-day-old female Sprague Dawley rats were fed ad libitum with a standard diet (control group) and a cafeteria diet (CAFD group) for a period of 20 weeks (20 W) and 32 weeks (32 W). We observed obesity, hyperglycemia, hyperlipidemia, hyperleptinemia and hypoadiponectinemia in CAFD fed groups. Hyperinsulinemia, hypergonadotrophism, hypertestosteronemia and hyperprogesteronemia were observed in the 20 W-CAFD group. Conversely, in the 32 W-CAFD group hypersecretion declined to hyposecretion. The levels of estradiol remained low during both time periods. The duration of estrous cycle was extended in the CAFD fed rats. The ovary weight was higher in the 20 W-CAFD fed rats but it was drastically reduced over a longer duration cafeteria diet feeding. In the 20 W-CAFD fed rats, the protein levels of LHR, StAR, CYP11A1, 3ß-HSD and 17ß-HSD were increased but FSHR and CYP19A1 levels were decreased in the ovary. On the other hand, gonadotropin receptor and the protein levels of steroidogenic enzymes were decreased in the ovary of 32 W-CAFD fed rats. We conclude that the duration of energy-dense diet consumption has differential regulatory mechanism in altering the ovarian steroid production. In 20 W-CAFD fed rats, hypergonadotropic condition was observed whereas, 32 W-CAFD consumption induced hypogonadotropic hypogonadism.


Assuntos
Dieta/efeitos adversos , Obesidade/etiologia , Doenças Ovarianas/metabolismo , Doenças Ovarianas/fisiopatologia , Ração Animal , Animais , Ciclo Estral/fisiologia , Feminino , Gonadotropinas/sangue , Lipídeos/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia , Tamanho do Órgão , Obesidade Infantil , Ratos Sprague-Dawley , Receptores da Gonadotropina/metabolismo , Esteroides/metabolismo , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-31199764

RESUMO

Background Curcumin is extensively used as a therapeutic intervention for treating several ailments. The antioxidant curcumin has an anti-inflammatory and chelating property with arsenic to exhibit a strong therapeutic effect on reproductive organs. This study was undertaken to describe the protective effect of noninvasive administration of curcumin against sodium-arsenite-mediated uterine hazards in female Wistar rats. Methods Twenty-four female Wistar rats were randomly divided into four groups. The treatment was continued for 8 days and given orally sodium arsenite (10 mg/kg body weight) in combination with curcumin (20 mg/kg body weight). Results Our evaluation revealed that 8 days of sodium arsenite (10 mg/kg body weight) treatment reduced the activities of the uterine enzymatic antioxidants superoxide dismutase, catalase, and peroxidase. Blood levels of vitamin B12 and folic acid decreased followed by an increased serum lactate dehydrogenase, homocysteine level, and hepatic metallothionein-1 in arsenic-treated rats. Necrosis of uterine tissue along with the disruption of ovarian steroidogenesis was marked in arsenic-treated rats with an upregulation of uterine NF-κB and IL-6 along with a raised level of serum TNF-α. Oral administration of curcumin (20 mg/kg body weight/day) in arsenic-treated rats significantly reinstated these alterations of the antioxidant system followed by an improvement of ovarian steroidogenesis and the circulating level of B12 and folate along with the downregulation of serum homocysteine, metallothionein-1, and cytokines. Conclusions The findings of this study clearly and strongly elucidated that arsenic-induced oxidative stress in uterus is linked to an alteration of inflammation-signaling biomarkers and these have been protected through the co-administration of curcumin due to its anti-inflammatory, free radical scavenging, and antioxidant activity by the possible regulation of an S-adenosine methionine pool.


Assuntos
Arsênio/administração & dosagem , Curcumina/efeitos adversos , Citocinas/metabolismo , Inflamação/metabolismo , Metalotioneína/metabolismo , Útero/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Arsenitos/efeitos adversos , Catalase/metabolismo , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar , Compostos de Sódio/efeitos adversos , Superóxido Dismutase/metabolismo , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...