Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38960312

RESUMO

BACKGROUND: The diagnosis and management of malaria in non-endemic countries presents a continuing challenge. Plasmodium falciparum, which is capable to rapidly induce severe and life-threatening multiorgan disease, is the species most frequently diagnosed in Europe and North America. OBJECTIVES: To summarise the more relevant diagnostic findings and clinical features of malaria observed in non-endemic settings and to provide an up-date of the key management decision points using three illustrative clinical scenarios of uncomplicated and severe malaria. SOURCES: The discussion is based on relevant literature search spanning the last twenty years. Recommendations are based on available clinical guidelines including those of the World Health Organization (WHO), on observational studies conducted in non-endemic settings and, when available, with extrapolation from randomised studies from malaria endemic settings. CONTENT: The following topics are covered: diagnosis, including the use of molecular biology; clinical characteristics; management with specific focus on complicated (severe) and uncomplicated malaria and on areas of resistance to available antimalarial drugs. IMPLICATIONS: Malaria imported to non-endemic settings, especially Plasmodium falciparum malaria, is sometimes initially overlooked and the delayed diagnosis is responsible every year of preventable deaths. This review aims to raise awareness of malaria outside endemic countries and to provide clinicians with a practical guide for efficient diagnosis and targeted therapy to the different species involved.

2.
MSMR ; 31(5): 31-36, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857496

RESUMO

MSMR publishes annual updates on the incidence of malaria among U.S. service members. Malaria infection remains a potential health threat to U.S. service members located in or near endemic areas due to duty assignment, participation in contingency operations, or personal travel. In 2023, a total of 39 active and reserve component service members were diagnosed with or reported to have malaria, an 8.3% increase from the 36 cases identified in 2022. Over half of the malaria cases in 2023 were caused by Plasmodium falciparum (53.8%; n=21) followed by unspecified types of malaria (35.9%; n=14) and P vivax and other Plasmodia (5.1%; n=2 each ). Malaria cases were diagnosed or reported from 22 different medical facilities: 18 in the U.S., 2 in Germany, 1 in Africa, 1 in South Korea. Of the 33 cases with known locations of diagnoses, 6 (18.2%) were reported from or diagnosed outside the U.S.


Assuntos
Malária , Militares , Humanos , Estados Unidos/epidemiologia , Militares/estatística & dados numéricos , Incidência , Malária/epidemiologia , Masculino , Feminino , Adulto , Vigilância da População , Adulto Jovem , Malária Falciparum/epidemiologia
3.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683374

RESUMO

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Assuntos
Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Brasil , Humanos , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Caspases/genética , Caspases/metabolismo , Expressão Gênica/genética
4.
medRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38633782

RESUMO

Background: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence. Methods: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls. Results: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/µL for P. knowlesi and 0.002 parasites/µL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/µL); Divis et al. real-time 18S rRNA (0.0002 parasites/µL); Lubis et al. hemi-nested SICAvar (1.1 parasites/µL) and Lee et al. nested 18S rRNA (11 parasites/µL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/µL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi. Conclusion: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

5.
Int Med Case Rep J ; 17: 161-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504722

RESUMO

In 2022, there were 249 million cases of malaria globally, resulting in 608,000 deaths. The majority of cases and deaths occurred in the WHO (World Health Organization) African Region. A study in our region found that, out of 263,476 individuals, 148,734 had P. falciparum, 106,946 had P. vivax, and 7,796 had mixed infections. The prevalence of P. falciparum (Plasmodium falciparum) was 8.97% and P. vivax (Plasmodium Vivax) was 7.94%. Although there have been a few reported cases of cerebral malaria caused by P. vivax, there is currently no comprehensive analysis of such cases. All the cases that have been reported so far involved individuals living in malaria-endemic areas, who presented with symptoms characteristic of cerebral malaria. Cerebral malaria was diagnosed based on the clinical algorithm which WHO used except we used P. vivax instead of P. falciparum The diagnosis of these cases was confirmed through thin blood film examination and Rapid Diagnostic Tests (RDTs). Therefore, this report aims to provide additional data on the occurrence of P. vivax as a cause of cerebral malaria. It also recommends further studies to reassess the current clinical case definition of cerebral malaria mainly in endemic areas as it affects patient treatment outcome.

6.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490637

RESUMO

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Plasmodium falciparum , Plasmodium vivax , Etiópia/epidemiologia , Malária Vivax/transmissão , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Humanos , Estudos Longitudinais , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Animais , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/fisiologia , Plasmodium falciparum/isolamento & purificação , Anopheles/parasitologia , Masculino , Feminino , Adulto , Adolescente , Criança , Adulto Jovem , Pré-Escolar , Infecções Assintomáticas/epidemiologia , Mosquitos Vetores/parasitologia , Pessoa de Meia-Idade
7.
Trials ; 25(1): 154, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424577

RESUMO

BACKGROUND: Plasmodium vivax remains a major challenge for malaria control and elimination due to its ability to cause relapsing illness. To prevent relapses the Indian National Center for Vector Borne Diseases Control (NCVBDC) recommends treatment with primaquine at a dose of 0.25 mg/kg/day provided over 14 days. Shorter treatment courses may improve adherence and treatment effectiveness. METHODS: This is a hospital-based, randomised, controlled, open-label trial in two centres in India. Patients above the age of 16 years, with uncomplicated vivax malaria, G6PD activity of ≥ 30% of the adjusted male median (AMM) and haemoglobin levels ≥ 8 g/dL will be recruited into the study and randomised in a 1:1 ratio to receive standard schizonticidal treatment plus 7-day primaquine at 0.50 mg/kg/day or standard care with schizonticidal treatment plus 14-day primaquine at 0.25 mg/kg/day. Patients will be followed up for 6 months. The primary endpoint is the incidence risk of any P. vivax parasitaemia at 6 months. Safety outcomes include the incidence risk of severe anaemia (haemoglobin < 8 g/dL), the risk of blood transfusion, a > 25% fall in haemoglobin and an acute drop in haemoglobin of > 5 g/dL during primaquine treatment. DISCUSSION: This study will evaluate the efficacy and safety of a 7-day primaquine regimen compared to the standard 14-day regimen in India. Results from this trial are likely to directly inform national treatment guidelines. TRIAL REGISTRATION: Trial is registered on CTRI portal, Registration No: CTRI/2022/12/048283.


Assuntos
Antimaláricos , Malária Vivax , Adolescente , Adulto , Humanos , Masculino , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Hemoglobinas , Índia , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Primaquina/efeitos adversos , Primaquina/uso terapêutico , Recidiva , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Malar J ; 23(1): 55, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395885

RESUMO

BACKGROUND: Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite surface protein located in the micronemes of P. vivax. The invasion of human reticulocytes by P. vivax merozoites depends on the parasite DBP binding domain engaging Duffy Antigen Receptor for Chemokine (DARC) on these red blood cells (RBCs). PvDBPII shows high genetic diversity which is a major challenge to its use in the development of a vaccine against vivax malaria. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 in five study sites across Ethiopia. A total of 58 blood samples confirmed positive for P. vivax by polymerase chain reaction (PCR) were included in the study to determine PvDBPII genetic diversity. PvDBPII were amplified using primers designed from reference sequence of P. vivax Sal I strain. Assembling of sequences was done using Geneious Prime version 2023.2.1. Alignment and phylogenetic tree constructions using MEGA version 10.1.1. Nucleotide diversity and haplotype diversity were analysed using DnaSP version 6.12.03, and haplotype network was generated with PopART version 1.7. RESULTS: The mean age of the participants was 25 years, 5 (8.6%) participants were Duffy negatives. From the 58 PvDBPII sequences, seven haplotypes based on nucleotide differences at 8 positions were identified. Nucleotide diversity and haplotype diversity were 0.00267 ± 0.00023 and 0.731 ± 0.036, respectively. Among the five study sites, the highest numbers of haplotypes were identified in Arbaminch with six different haplotypes while only two haplotypes were identified in Gambella. The phylogenetic tree based on PvDBPII revealed that parasites of different study sites shared similar genetic clusters with few exceptions. Globally, a total of 39 haplotypes were identified from 223 PvDBPII sequences representing different geographical isolates obtained from NCBI archive. The nucleotide and haplotype diversity were 0.00373 and 0.845 ± 0.015, respectively. The haplotype prevalence ranged from 0.45% to 27.3%. Two haplotypes were shared among isolates from all geographical areas of the globe. CONCLUSIONS: PvDBPII of the Ethiopian P. vivax isolates showed low nucleotide but high haplotype diversity, this pattern of genetic variability suggests that the population may have undergone a recent expansion. Among the Ethiopian P. vivax isolates, almost half of the sequences were identical to the Sal-I reference sequence. However, there were unique haplotypes observed in the Ethiopian isolates, which does not share with isolates from other geographical areas. There were two haplotypes that were common among populations across the globe. Categorizing population haplotype frequency can help to determine common haplotypes for designing an effective blood-stage vaccine which will have a significant role for the control and elimination of P. vivax.


Assuntos
Malária Vivax , Vacinas , Humanos , Adulto , Plasmodium vivax , Filogenia , Etiópia/epidemiologia , Estudos Transversais , Seleção Genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Malária Vivax/parasitologia , Haplótipos , Nucleotídeos , Variação Genética
9.
Malar J ; 23(1): 20, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225627

RESUMO

BACKGROUND: Malaria remains a major public health problem in sub-Saharan Africa, particularly in Benin. The present study aims to evaluate the different Plasmodium species transmitted by malaria vectors in the communes of Cove, Zagnanado and Ouinhi, Southern Benin. METHODS: The study was conducted between December 2021 and October 2022 in 60 villages spread over the three study communes. Adult mosquitoes were collected from four houses in each village using human landing catches (HLCs). After morphological identification, a subsample of Anopheles gambiae, Anopheles funestus and Anopheles nili was analysed by PCR to test for their infection to the different Plasmodium species. RESULTS: Anopheles gambiae was collected at higher frequency in all the three study communes, representing 93.5% (95% CI 92.9-94) of all collected mosquitoes (n = 10,465). In total, five molecular species were found, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii of the Gambiae complex, An. funestus and Anopheles leesoni of the Funestus group, and An. nili s.s., the sole species of the Nili group. From the five molecular species, four (An. gambiae s.s., An. coluzzii, An. funestus s.s. and An. nili s.s.) were found to be infected. Plasmodium falciparum was the main Plasmodium species in the study area, followed by Plasmodium vivax and Plasmodium ovale. Only An. gambiae s.s. was infected with all three Plasmodium species, while An. coluzzii was infected with two species, P. falciparum and P. vivax. CONCLUSIONS: Plasmodium falciparum was the only species tested for in malaria vectors in Benin, and remains the only one against which most control tools are directed. It is, therefore, necessary that particular attention be paid to secondary Plasmodium species for an efficient control of the disease. The presence of P. vivax emphasizes the need for an update of case management for malaria.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , Plasmodium , Animais , Adulto , Humanos , Benin , Plasmodium vivax , Mosquitos Vetores , África Ocidental , Plasmodium falciparum
10.
Biomedicines ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255246

RESUMO

(1) Background: Malaria remains a significant global public health issue. Since parasites quickly became resistant to most of the available antimalarial drugs, treatment effectiveness must be constantly monitored. In Brazil, up to 10% of cases of vivax malaria resistant to chloroquine (CQ) have been registered. Unlike P. falciparum, there are no definitive molecular markers for the chemoresistance of P. vivax to CQ. This work aimed to investigate whether polymorphisms in the pvcrt-o and pvmdr1 genes could be used as markers for assessing its resistance to CQ. (2) Methods: A total of 130 samples from P. vivax malaria cases with no clinical and/or parasitological evidence of CQ resistance were studied through polymerase chain reaction for gene amplification followed by target DNA sequencing. (3) Results: In the pvcrt-o exons, the K10 insert was present in 14% of the isolates. Regarding pvmdr1, T958M and F1076L haplotypes showed frequencies of 95% and 3%, respectively, while the SNP Y976F was not detected. (4) Conclusions: Since K10-pvcrt-o and F1076L/T958M-pvmdr1 polymorphisms were detected in samples from patients who responded well to CQ treatment, it can be concluded that mutations in these genes do not seem to have a potential for association with the phenotype of CQ resistance.

11.
Elife ; 122023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132182

RESUMO

Pathogen evolution of drug resistance often occurs in a stepwise manner via the accumulation of multiple mutations that in combination have a non-additive impact on fitness, a phenomenon known as epistasis. The evolution of resistance via the accumulation of point mutations in the DHFR genes of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) has been studied extensively and multiple studies have shown epistatic interactions between these mutations determine the accessible evolutionary trajectories to highly resistant multiple mutations. Here, we simulated these evolutionary trajectories using a model of molecular evolution, parameterised using Rosetta Flex ddG predictions, where selection acts to reduce the target-drug binding affinity. We observe strong agreement with pathways determined using experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of fixation of resistance mutations. We also infer pathways directly from the frequency of mutations found in isolate data, and observe remarkable agreement with the most likely pathways predicted by our mechanistic model, as well as those determined experimentally. This suggests mutation frequency data can be used to intuitively infer evolutionary pathways, provided sufficient sampling of the population.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Pirimetamina , Mutação , Mutação Puntual , Evolução Molecular , Plasmodium falciparum/genética , Resistência a Medicamentos/genética , Tetra-Hidrofolato Desidrogenase/genética
12.
Diagnostics (Basel) ; 13(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998533

RESUMO

In India, where malaria is endemic, the prompt and accurate detection of infections is crucial for disease management and vector control. Our study aimed to evaluate the "iRBC" flag, a novel parameter developed for routine hematology analyzers, for its sensitivity and specificity in detecting Plasmodium vivax (P. vivax) infections. We used residual blood samples from patients with suspected malaria and compared the iRBC flag results with microscopy, which serves as the gold standard. Additionally, we compared the results with rapid immuno-chromatographic tests (RDTs) commonly used in the field. Our study included 575 samples, of which 187 were positive for P. vivax. The iRBC flag demonstrated a high sensitivity of 88.7% and 86.1% on the XN and XN-L hematology analyzers, respectively, and a clinical specificity of 100% on both analyzers. Furthermore, the scattergram derived from each positive dataset exhibited distinct patterns, which facilitated rapid confirmation by laboratory specialists. Notably, the iRBC flag remained effective even in the presence of interfering conditions. Overall, our results indicate that the iRBC flag is a reliable and rapid screening tool for identifying P. vivax in routine blood testing. Our findings have significant implications for malaria detection and control in endemic regions like India.

13.
Pathog Glob Health ; : 1-10, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994442

RESUMO

INTRODUCTION: Chloroquine (CQ) is the drug of choice for treating uncomplicated Plasmodium vivax (P. vivax) malaria in India. The knowledge about the exact burden of CQ resistance in P. vivax in India is scarce. Therefore, this systematic review aimed to assess the prevalence of CQ resistance in reported P. vivax cases from India. METHODS: PubMed, EMBASE, and Web of Science, were searched using the search string: 'Malaria AND vivax AND chloroquine AND (resistance OR resistant) AND India'. We systematically reviewed in-vivo and in-vitro drug efficacy studies that investigated the CQ efficacy of P. vivax malaria between January 1995 and December 2022. Those studies where patients were followed up for at least 28 days after initiation of treatment were included. RESULTS: We identified 12 eligible CQ therapeutic efficacy studies involving 2470 patients, Of these 2329 patients were assessed by in-vivo therapeutic efficacy methods and the remaining 141 were assessed by in-vitro methods. CQ resistance was found in 25/1787 (1.39%) patients from in-vivo and in 11/141 (7.8%) patients from in-vitro drug efficacy studies. CONCLUSION: Based on the available studies, the prevalence of CQ resistance in P. vivax was found to be relatively lower in India. However, continued surveillance and monitoring are crucial to identify the emergence of CQ resistance.

14.
Trop Med Int Health ; 28(10): 817-829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37705047

RESUMO

INTRODUCTION: The World Health Organization recommends regular monitoring of the efficacy of nationally recommended antimalarial drugs. We present the results of studies on the efficacy of recommended antimalarials and molecular markers of artemisinin and partner resistance in Afghanistan, Pakistan, Somalia, Sudan and Yemen. METHODS: Single-arm prospective studies were conducted to evaluate the efficacy of artesunate-sulfadoxine-pyrimethamine (ASSP) in Afghanistan and Pakistan, artemether-lumefantrine (AL) in all countries, or dihydroartemisinin-piperaquine (DP) in Sudan for the treatment of Plasmodium falciparum. The efficacy of chloroquine (CQ) and AL for the treatment of Plasmodium vivax was evaluated in Afghanistan and Somalia, respectively. Patients were treated and monitored for 28 (CQ, ASSP and AL) or 42 (DP) days. Polymerase chain reaction (PCR)-corrected cure rate and parasite positivity rate at Day 3 were estimated. Mutations in the P. falciparum kelch 13 (Pfk13) gene and amplifications of plasmepsin (Pfpm2) and multidrug resistance-1 (Pfmdr-1) genes were also studied. RESULTS: A total of 1680 (249 for ASSP, 1079 for AL and 352 for DP) falciparum cases were successfully assessed. A PCR-adjusted ASSP cure rate of 100% was observed in Afghanistan and Pakistan. For AL, the cure rate was 100% in all but four sites in Sudan, where cure rates ranged from 92.1% to 98.8%. All but one patient were parasite-free at Day 3. For P. vivax, cure rates were 98.2% for CQ and 100% for AL. None of the samples from Afghanistan, Pakistan and Yemen had a Pfk13 mutation known to be associated with artemisinin resistance. In Sudan, the validated Pfk13 R622I mutation accounted for 53.8% (14/26) of the detected non-synonymous Pfk13 mutations, most of which were repeatedly detected in Gadaref. A prevalence of 2.7% and 9.3% of Pfmdr1 amplification was observed in Pakistan and Yemen, respectively. CONCLUSION: High efficacy of ASSP, AL and DP in the treatment of uncomplicated falciparum infection and of CQ and AL in the treatment of P. vivax was observed in the respective countries. The repeated detection of a relatively high rate of Pfk13 R622I mutation in Sudan underscores the need for close monitoring of the efficacy of recommended ACTs, parasite clearance rates and Pfk13 mutations in Sudan and beyond. Registration numbers of the trials: ACTRN12622000944730 and ACTRN12622000873729 for Afghanistan, ACTRN12620000426987 and ACTRN12617001025325 for Pakistan, ACTRN12618001224213 for Somalia, ACTRN12617000276358, ACTRN12622000930785 and ACTRN12618001800213 for Sudan and ACTRN12617000283370 for Yemen.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Estudos Prospectivos , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Cloroquina/uso terapêutico , Artesunato/uso terapêutico , Plasmodium falciparum/genética , Combinação de Medicamentos , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Resistência a Medicamentos/genética
15.
Jpn J Infect Dis ; 76(6): 358-364, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37648490

RESUMO

This study investigated the role of genetic variant rs8177374 in MAL/TIRAP gene in mediating the cytokine levels of IFN-γ, TNF-α, IL-10, and TGF-ß in malaria patients due to Plasmodium falciparum or P. vivax infection. The study included human blood samples collected from patients with malaria (n = 228) and healthy controls (n = 226). P. falciparum and P. vivax groups were established based on the causative species of Plasmodium. Malaria samples were divided into mild and severe malaria groups based on the symptoms that appeared in the patients, according to the WHO criteria. In a previous study, we genotyped rs8177374 via allele specific PCR strategy. In this study, cytokine levels were estimated in the blood plasma of rs8177374 genotype samples via Sandwich Enzyme Linked Immunosorbent Assay kits. Increased IFN-γ and TNF-α levels in presence of CC genotype indicates the role of CC genotype in both severe and mild malaria groups. Enhanced IL-10 levels in the CT genotype and mild malaria groups suggest a role of CT genotype and IL-10 in the mild clinical outcomes of malaria. The rs8177374 polymorphism in MAL/TIRAP plays an important role in malaria pathogenesis.


Assuntos
Malária Vivax , Malária , Humanos , Citocinas/genética , Interferon gama/genética , Interleucina-10/genética , Malária Vivax/genética , Malária Vivax/patologia , Fator 88 de Diferenciação Mieloide/genética , Polimorfismo Genético , Fator de Crescimento Transformador beta/genética , Fator de Necrose Tumoral alfa/genética
16.
Malar J ; 22(1): 236, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582796

RESUMO

BACKGROUND: Drug resistance is a serious impediment to efficient control and elimination of malaria in endemic areas. METHODS: This study aimed at analysing the genetic profile of molecular drug resistance in Plasmodium falciparum and Plasmodium vivax parasites from India over a ~ 30-year period (1993-2019). Blood samples of P. falciparum and/or P. vivax-infected patients were collected from 14 regions across India. Plasmodial genome was extracted and used for PCR amplification and sequencing of drug resistance genes in P. falciparum (crt, dhps, dhfr, mdr1, k13) and P. vivax (crt-o, dhps, dhfr, mdr1, k12) field isolates. RESULTS: The double mutant pfcrt SVMNT was highly predominant across the country over three decades, with restricted presence of triple mutant CVIET from Maharashtra in 2012. High rates of pfdhfr-pfdhps quadruple mutants were observed with marginal presence of "fully resistant" quintuple mutant ACIRNI-ISGEAA. Also, resistant pfdhfr and pfdhps haplotype has significantly increased in Delhi between 1994 and 2010. For pfmdr1, only 86Y and 184F mutations were present while no pfk13 mutations associated with artemisinin resistance were observed. Regarding P. vivax isolates, the pvcrt-o K10 "AAG" insertion was absent in all samples collected from Delhi in 2017. Pvdhps double mutant SGNAV was found only in Goa samples of year 2008 for the first time. The pvmdr1 908L, 958M and 1076L mutations were highly prevalent in Delhi and Haryana between 2015 and 2019 at complete fixation. One nonsynonymous novel pvk12 polymorphism was identified (K264R) in Goa. CONCLUSIONS: These findings support continuous surveillance and characterization of P. falciparum and P. vivax populations as proxy for effectiveness of anti-malarial drugs in India, especially for independent emergence of artemisinin drug resistance as recently seen in Africa.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Humanos , Plasmodium falciparum , Plasmodium vivax , Perfil Genético , Índia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Malária Vivax/epidemiologia , Artemisininas/uso terapêutico , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
17.
Trop Med Infect Dis ; 8(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37624330

RESUMO

The global malaria community has picked up the theme of malaria elimination in more than 90% of the world's population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen. A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for the global malaria community, national malaria programs (NMPs), funding agencies and relevant stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of malaria, including P. vivax, in sub-Saharan Africa is warranted.

18.
Malar J ; 22(1): 201, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393257

RESUMO

BACKGROUND: Plasmodium vivax malaria is now recognized as a cause of severe morbidity and mortality, resulting in a substantial negative effect on health especially in endemic countries. Accurate and prompt diagnosis and treatment of P. vivax malaria is vital for the control and elimination of the disease. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 at five malaria endemic sites in Ethiopia including Aribaminch, Shewarobit, Metehara, Gambella, and Dubti. A total of 365 samples that were diagnosed positive for P. vivax (mono and mixed infection) using RDT, site level microscopists and expert microscopists were selected for PCR. Statistical analyses were performed to calculate the proportions, agreement (k), frequencies, and ranges among different diagnostic methods. Fisher's exact tests and correlation test were used to detect associations and relationship between different variables. RESULTS: Of the 365 samples, 324 (88.8%), 37(10.1%), 2 (0.5%), and 2 (0.5%) were P. vivax (mono), P. vivax/Plasmodium falciparum (mixed), P. falciparum (mono) and negative by PCR, respectively. The overall agreement of rapid diagnostic test (RDT), site level microscopy and expert microscopists result with PCR was 90.41% (k: 0.49), 90.96% (k: 0.53), and 80.27% (k: 0.24). The overall prevalence of sexual (gametocyte) stage P. vivax in the study population was 215/361 (59.6%). The majority of these 215 samples (180; 83.7%) had below 1000 parasites/µl, with only four samples (1.9%) had ≥ 5000 parasites/µl. The gametocyte density was found to be weakly positive but statically significant with asexual parasitaemia (r = 0.31; p < 0.001). CONCLUSION: Both microscopy and RDT showed moderate agreement with PCR in the detection and identification of P. vivax (mono) and P. vivax/P. falciparum (mixed) infections. Therefore, to achieve malaria elimination goals, strengthening routine malaria diagnostic methods by implementing diagnostic tools with a good performance in detecting and accurately identifying malaria species in clinical settings is recommended.


Assuntos
Coinfecção , Malária Falciparum , Malária Vivax , Malária , Humanos , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Plasmodium vivax/genética , Etiópia/epidemiologia , Estudos Transversais , Microscopia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Reação em Cadeia da Polimerase
19.
Malar J ; 22(1): 188, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340440

RESUMO

BACKGROUND: The threat of malaria is still present in the world. Recognizing the type of parasite is important in determining a treatment plan. The golden routine involves microscopic diagnostics of Giemsa-stained thin blood smears, however, alternative methods are also constantly being sought, in order to gain an additional insight into the course of the disease. Spectroscopic methods, e.g., Raman spectroscopy, are becoming increasingly popular, due to the non-destructive nature of these techniques. METHODS: The study included patients hospitalized for malaria caused by Plasmodium falciparum or Plasmodium vivax, in the Department of Infectious Diseases at the University Hospital in Krakow, Poland, as well as healthy volunteers. The aim of this study was to assess the possibility of using Raman spectroscopy and 2D correlation (2D-COS) spectroscopy in understanding the structural changes in erythrocytes depending on the type of attacking parasite. EPR spectroscopy and two-trace two-dimensional (2T2D) correlation was also used to examine the specificity of paramagnetic centres found in the infected human blood. RESULTS: Two-dimensional (2D) correlation spectroscopy facilitates the identification of the hidden relationship, allowing for the discrimination of Raman spectra obtained during the course of disease in human red blood cells, infected by P. falciparum or P. vivax. Synchronous cross-peaks indicate the processes taking place inside the erythrocyte during the export of the parasite protein towards the cell membrane. In contrast, moieties that generate asynchronous 2D cross-peaks are characteristic of the respective ligand-receptor domains. These changes observed during the course of the infection, have different dynamics for P. falciparum and P. vivax, as indicated by the asynchronous correlation cross-peaks. Two-trace two-dimensional (2T2D) spectroscopy, applied to EPR spectra of blood at the beginning of the infection, showed differences between P. falciparum and P. vivax. CONCLUSIONS: A unique feature of 2D-COS is the ability to discriminate the collected Raman and EPR spectra. The changes observed during the course of a malaria infection have different dynamics for P. falciparum and P. vivax, indicated by the reverse sequence of events. For each type of parasite, a specific recycling process for iron was observed in the infected blood.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Malária/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium falciparum , Plasmodium vivax , Eritrócitos/parasitologia
20.
Cytokine ; 169: 156278, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356261

RESUMO

BACKGROUND: The innate immune response plays an important role during malaria. Toll-like receptors (TLR) are capable of recognizing pathogen molecules. We aimed to evaluate five polymorphisms in TLR-4, TLR-6, and TLR-9 genes and their association with cytokine levels and clinical parameters in malaria from the Brazil-French Guiana border. METHODS: A case-control study was conducted in Amapá, Brazil. P. vivax patients and individuals not infected were evaluated. Genotyping of five SNPs was carried out by qPCR. Circulating cytokines were measured by CBA. The MSP-119 IgG antibodies were performed by ELISA. RESULTS: An association between TLR4 A299G with parasitemia was observed. There was an increase for IFN-ɤ, TNF-ɑ, IL-6, and IL-10 in the TLR-4 A299G and T3911, TLR-6 S249P, and TLR-9 1486C/T, SNPs for the studied malarial groups. There were significant findings for the TLR-4 variants A299G and T3911, TLR-9 1237C/T, and 1486C/T. For the reactivity of MSP-119 antibodies levels, no significant results were found in malaria, and control groups. CONCLUSIONS: The profile of the immune response observed by polymorphisms in TLRs genes does not seem to be standard for all types of malaria infection around the world. This can depend on the human population and the species of Plasmodium.


Assuntos
Malária Vivax , Malária , Humanos , Malária Vivax/genética , Receptor Toll-Like 9 , Receptor 4 Toll-Like/genética , Receptor 6 Toll-Like/genética , Estudos de Casos e Controles , Brasil , Guiana Francesa , Proteína 1 de Superfície de Merozoito/genética , Genótipo , Predisposição Genética para Doença , Receptores Toll-Like/genética , Polimorfismo de Nucleotídeo Único/genética , Plasmodium vivax/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...