Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.664
Filtrar
1.
Drug Metab Dispos ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951034

RESUMO

Pigs are sometimes utilized in preclinical drug metabolism studies, with growing interest, and so their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity, i.e., at the ω-position of fatty acids. These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. Significance Statement Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.

2.
Front Pharmacol ; 15: 1406860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957391

RESUMO

Currently 1.3 billion individuals globally engage in smoking, leading to significant morbidity and mortality, particularly among diabetic patients. There is urgent need for a better understanding of how smoking influences antidiabetic treatment efficacy. The review underscores the role of cigarette smoke, particularly polycyclic aromatic hydrocarbons (PAHs), in modulating the metabolic pathways of antidiabetic drugs, primarily through the induction of cytochrome P450 (CYP450) enzymes and uridine diphosphate (UDP)-glucuronosyltransferases (UGTs), thus impacting drug pharmacokinetics and therapeutic outcomes. Furthermore, the review addresses the relatively uncharted territory of how smoking cessation influences diabetes treatment, noting that cessation can lead to significant changes in drug metabolism, necessitating dosage adjustments. Special attention is given to the interaction between smoking cessation aids and antidiabetic medications, a critical area for patient safety and effective diabetes management. This scoping review aims to provide healthcare professionals with the knowledge to better support diabetic patients who smoke or are attempting to quit, ensuring tailored and effective treatment strategies. It also identifies gaps in current research, advocating for more studies to fill these voids, thereby enhancing patient care and treatment outcomes for this at-risk population.

3.
Leg Med (Tokyo) ; 70: 102482, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959586

RESUMO

A case of death due to combined use of multiple drugs is reported, and the pharmacokinetic interactions are discussed. A woman in her thirties was found dead in her home. A medico-legal autopsy found no findings suggestive of injury or natural disease. Toxicological analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) identified a toxic level of fluvoxamine (0.947 µg/mL), and concentrations greater than the therapeutic levels of levomepromazine (0.238 µg/mL) and trihexyphenidyl (0.225 µg/mL) were present, while bromazepam, haloperidol, sulpiride, and 7-aminoflunitrazepam were within or below their therapeutic ranges. Fluvoxamine is mainly metabolized by cytochrome P450 2D6 (CYP2D6), and levomepromazine is a potent CYP2D6 inhibitor. A high concentration of levomepromazine may increase the blood fluvoxamine level. Since the combined use of levomepromazine and fluvoxamine induces seizures, it may have been involved in causing the subject's death. In addition, combined use of trihexyphenidyl may potentiate anticholinergic effects of fluvoxamine overdose, including convulsions and coma. It was concluded that the cause of the subject's death was the interaction of multiple drugs.

4.
Chemistry ; : e202401487, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963680

RESUMO

Vitamin D deficiency affects nearly half the population, with many requiring or opting for supplements with vitamin D3(VD3), the precursor of vitamin D (1α,25-dihydroxyVD3). 25-HydroxyVD3, the circulating form of vitamin D, is a more effective supplement than VD3 but its synthesis is complex. We report here the engineering of cytochrome P450BM3(CYP102A1) for the selective oxidation of VD3 to 25-hydroxyVD3. Long-range effects of the substrate-channel mutation Glu435Ile promoted binding of the VD3 side chain close to the heme, enhancing VD3 oxidation activity that reached 6.62 g of 25-hydroxyVD3 isolated from a 1-litre scale reaction (69.1% yield; space-time-yield 331 mg/L/h).

5.
Structure ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38971159

RESUMO

OleP is a bacterial cytochrome P450 involved in oleandomycin biosynthesis as it catalyzes regioselective epoxidation on macrolide intermediates. OleP has recently been reported to convert lithocholic acid (LCA) into murideoxycholic acid through a highly regioselective reaction and to unspecifically hydroxylate testosterone (TES). Since LCA and TES mainly differ by the substituent group at the C17, here we used X-ray crystallography, equilibrium binding assays, and molecular dynamics simulations to investigate the molecular basis of the diverse reactivity observed with the two steroids. We found that the differences in the structure of TES and LCA affect the capability of these molecules to directly form hydrogen bonds with N-terminal residues of OleP internal helix I. The establishment of these contacts, by promoting the bending of helix I, fosters an efficient trigger of the open-to-closed structural transition that occurs upon substrate binding to OleP and contributes to the selectivity of the subsequent monooxygenation reaction.

6.
Pharmacol Res Perspect ; 12(4): e1241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992911

RESUMO

Lenvatinib (LEN), a multitarget tyrosine kinase inhibitor used in various cancer treatments, is mainly metabolized by cytochrome P450 3A (CYP3A) enzymes. The importance of therapeutic drug monitoring (TDM) in patients administered LEN has been proposed. Although some biomarkers of endogenous CYP3A activity have been reported, their utility in dosage adjustments has not been well evaluated. This study investigated the correlation between plasma LEN concentrations and endogenous urinary CYP3A biomarkers in clinical practice. Concentrations of plasma LEN (N = 225) and CYP3A biomarkers (cortisol, 6ß-hydroxycortisol, deoxycholic acid, and 1ß-hydroxydeoxycholic acid) in urine (N = 214) from 20 patients (hepatocellular carcinoma, N = 6; thyroid cancer, N = 3; endometrial cancer, N = 8; and renal cell carcinoma, N = 3) collected for consultation for up to 1 year were evaluated using liquid chromatography-tandem mass spectrometry. Moreover, plasma trough LEN concentrations were predicted using a three-compartment model with linear elimination for outpatients administered LEN before sample collection. Moderate correlations were observed between the quantified actual concentrations and the predicted trough concentrations of LEN, whereas there was no correlation with endogenous urinary CYP3A biomarkers. The utility of endogenous urinary CYP3A biomarkers could not be determined. However, TDM for outpatients administered orally available medicines may be predicted using a nonlinear mixed effect model (NONMEM). This study investigated the utility of endogenous urinary CYP3A biomarkers for personalized medicine and NONMEM for predicting plasma trough drug concentrations. These findings will provide important information for further clinical investigation and detailed TDM.


Assuntos
Biomarcadores , Citocromo P-450 CYP3A , Monitoramento de Medicamentos , Compostos de Fenilureia , Quinolinas , Humanos , Compostos de Fenilureia/urina , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/sangue , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/administração & dosagem , Feminino , Quinolinas/urina , Quinolinas/uso terapêutico , Quinolinas/sangue , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Idoso , Pessoa de Meia-Idade , Masculino , Biomarcadores/urina , Biomarcadores/sangue , Monitoramento de Medicamentos/métodos , Adulto , Idoso de 80 Anos ou mais , Antineoplásicos/urina , Antineoplásicos/uso terapêutico , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Inibidores de Proteínas Quinases/urina , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/sangue , Neoplasias/urina , Espectrometria de Massas em Tandem/métodos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/urina , Neoplasias do Endométrio/sangue , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/urina , Cromatografia Líquida/métodos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/urina , Neoplasias da Glândula Tireoide/sangue , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/urina , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/urina , Carcinoma de Células Renais/sangue
7.
J Pharmacol Toxicol Methods ; 128: 107540, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996943

RESUMO

X-376 is a novel anaplastic lymphoma kinase (ALK) inhibitor that is capable of penetrating the blood brain barrier. This makes it suitable for use in patients with ALK-positive non-small cell lung cancer (NSCLC) who have metastases in the central nervous system. This study developed a highly sensitive, fast, eco-friendly, and reliable UPLC-MS/MS approach to quantify X-376 in human liver microsomes (HLMs). This approach was used to evaluate X-376's metabolic stability in HLMs in vitro. The UPLC-MS/MS analytical technique validation followed US-FDA bio-analytical method validation guidelines. StarDrop software, containing P450 metabolic and DEREK modules, was utilized to scan X-376's chemical structure for metabolic lability and hazardous warnings. X-376 and Encorafenib (ENF as internal standard) were resoluted on the Eclipse Plus C18 column utilizing an isocratic mobile phase method. The X-376 calibration curve was linear from 1 to 3000 ng/mL. The precision and accuracy of this study's UPLC-MS/MS approach were tested for intra- and inter-day measurements. Inter-day accuracy was -1.32% to 9.36% while intra-day accuracy was -1.5% to 10.00%. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of X-376 were 59.77 mL/min/kg and 13.56 min. The high extraction ratio of X-376 supports the 50 mg twice-daily dose for ALK-positive NSCLC and CNS metastases patients. In silico software suggests that simple structural changes to the piperazine ring or group substitution in drug design may improve metabolic stability and safety compared to X-376.

8.
J Inorg Biochem ; 259: 112660, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002177

RESUMO

Resonance Raman spectroscopy has been performed on a set of cytochrome P450 BM3 heme domains in which mutation of the highly conserved Phe393 induces significant variation in heme iron reduction potential. In previous work [Chen, Z., Ost, T.W.B., and Schelvis, J.P.M. (2004) Biochemistry 43, 1798-1808], a correlation between heme vinyl conformation and the heme iron reduction potential indicated a steric control by the protein over the distribution of electron density in the reduced heme cofactor. The current study aims to monitor changes in electron density on the ferrous heme cofactor following CO binding. In addition, ferric-NO complexes have been studied to investigate potential changes to the proximal Cys400 thiolate. We find that binding of CO to the ferrous heme domains results in a reorientation of the vinyl groups to a largely out-of-plane conformation, the extent of which correlates with the size of the residue at position 393. We conclude that FeII dπ back bonding to the CO ligand largely takes away the need for conjugation of the vinyl groups with the porphyrin ring to accommodate FeII dπ back bonding to the porphyrin ligand. The ferrous-CO and ferric-NO data are consistent with a small decrease in σ-electron donation from the proximal Cys400 thiolate in the F393A mutant and, to a lesser extent, the F393H mutant, potentially due to a small increase in hydrogen bonding to the proximal ligand. Phe393 seems strategically placed to preserve robust σ-electron donation to the heme iron and to fine-tune its electron density by limiting vinyl group rotation.

9.
Angew Chem Int Ed Engl ; : e202409217, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989537

RESUMO

Cytochrome P450 2D6 (CYP2D6) is a key enzyme that mediates the metabolism of various drugs and endogenous substances in humans. However, its biological role in drug-drug interactions especially mechanism-based inactivation (MBI), and various diseases remains poorly understood, owing to the lack of molecular tools suitable for selectively monitoring CYP2D6 in complex biological systems. Herein, using a tailored molecular strategy, we developed a fluorescent probe BDPM for CYP2D6. BDPM exhibits excellent specificity and imaging capability for CYP2D6, making it suitable for the real-time monitoring of endogenous CYP2D6 activity in living bio-samples. Therefore, our tailored strategy proved useful for constructing the highly selective and enzyme-activated fluorescent probes. BDPM as a molecular tool to explore the critical roles of CYP2D6 in the pathogenesis of diseases, high-throughput screening of inhibitors and intensive investigation of CYP2D6-induced MBI in natural systems.

10.
J Hazard Mater ; 476: 135163, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996679

RESUMO

Selection of chemical-resistant predatory mites is a good alternative to balance the contradiction between chemical control and biological control. Previously, a resistant strain of Neoseiulus barkeri for chlorpyrifos was obtained. In the current study, two up-regulated (NbCYP3A6, NbCYP3A16) and one down-regulated (NbCYP3A24) P450s were screened through differential expression analysis and other detoxification-related genes such as CCEs, GST, etc. were not found. 3D modelling and molecular docking indicated that the chlorine at position 5 on the pyridine ring of chlorpyrifos, as well as a methyl group, were closest to the heme iron of the enzymes (less than 5 Å). Three active recombinant P450 proteins were heterologously expressed and metabolized with chlorpyrifos in vitro. HPLC assay showed that only NbCYP3A24 could metabolize chlorpyrifos, with a metabolism rate of 21.60 %. Analysis of the m/z of metabolites by LC-MS/MS showed that chlorine at the 5C position of chlorpyrifos was stripped and hydroxylated, whereas chlorpyrifos-oxon, a common product of oxidation by P450, was not found. Knockdown of the NbCYP3A24 gene in the susceptiblestrain did reduce the susceptibility of N. barkeri to chlorpyrifos, suggesting that the biological activity of the metabolite may be similar to chlorpyrifos-oxon, thus enhancing the inhibitory effect on the target.

11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000287

RESUMO

Cytochrome P450 enzymes are monooxygenases widely diffused in nature ranging from viruses to man. They can catalyze a very wide range of reactions, including the ketonization of C-H bonds, N/O/S-dealkylation, C-C bond cleavage, N/S-oxidation, hydroxylation, and the epoxidation of C=C bonds. Their versatility makes them valuable across various fields such as medicine, chemistry, and food processing. In this review, we aim to highlight the significant contribution of P450 enzymes to fruit quality, with a specific focus on the ripening process, particularly in grapevines. Grapevines are of particular interest due to their economic importance in the fruit industry and their significance in winemaking. Understanding the role of P450 enzymes in grapevine fruit ripening can provide insights into enhancing grape quality, flavor, and aroma, which are critical factors in determining the market value of grapes and derived products like wine. Moreover, the potential of P450 enzymes extends beyond fruit ripening. They represent promising candidates for engineering crop species that are resilient to both biotic and abiotic stresses. Their involvement in metabolic engineering offers opportunities for enhancing fruit quality attributes, such as taste, nutritional content, and shelf life. Harnessing the capabilities of P450 enzymes in crop improvement holds immense promise for sustainable agriculture and food security.


Assuntos
Sistema Enzimático do Citocromo P-450 , Frutas , Vitis , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/enzimologia , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Vitis/enzimologia , Vitis/metabolismo , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000543

RESUMO

Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.


Assuntos
Diferenciação Celular , Sistema Enzimático do Citocromo P-450 , Doenças Neurodegenerativas , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Linhagem Celular Tumoral , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios/metabolismo
13.
Neuropharmacology ; : 110065, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004413

RESUMO

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i.p.) 1 hour prior to ketamine or HNKs (10 mg/kg, i.p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 hours post-injection (t24h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.

14.
Drug Metab Dispos ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038953

RESUMO

Since his graduate studies on alcohol induction of a novel cytochrome P450 (P450) enzyme, through his postdoctoral work on hormonal regulation of sexually differentiated P450s, the author has maintained an interest in the regulation of P450 (P450) drug metabolizing enzymes. This article is a recounting of his scientific career and focusses on his laboratory's work on inflammatory regulation of P450 enzymes that formed the basis for the Bernard B. Brodie Award. Key findings and publications are identified and discussed that contributed to the elucidation of some important principles: 1) Inflammatory stimuli generally downregulate P450 enzymes, resulting in reduced metabolism of substrate drugs; 2) The main mechanism for this downregulation is transcriptional and involves both the activation of negatively acting transcription factors and the suppression of positive transcription factors; 3) Inflammatory cytokines such as interleukin 1 (IL1), interleukin 6 (IL6) and tumor necrosis factor α (TNFα) act on hepatocytes to mediate this regulation; 4) These cytokines selectively regulate different P450 enzymes, and therefore different P450s may be downregulated in different inflammatory diseases or disease models; 5) Nitric oxide (NO) formed by inducible nitric oxide synthase 2 (NOS2) reacts with P450s in an enzyme-specific manner to stimulate their proteolytic degradation; and 6) Both tyrosine nitration and heme nitrosylation are likely required for this NO-stimulated degradation. Finally, findings from clinical studies are discussed that shine a light on the importance of P450 regulation by inflammation for drug development, clinical practice, and personalized medicine. Significance Statement This article discusses the key publications and findings in the author's lab that helped to identify inflammation as an important factor contributing to interindividual variation in drug metabolism.

15.
J Pharm Health Care Sci ; 10(1): 39, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997787

RESUMO

BACKGROUND: Treating refractory status epilepticus (RSE) remains a challenge. Thiamylal can be used as a second- or third-line treatment; however, its potential to induce cytochrome P450 (CYP) activity may reduce the concentration of antiepileptic drugs (AEDs) administered prior to thiamylal. This report details a case of RSE patient treated with thiamylal, with monitored concentrations of thiamylal and other AEDs. CASE PRESENTATION: A 72-year-old healthy man developed RSE. Despite the administration of various AEDs, his seizures were not resolved. Thiamylal was then administered at an initial bolus dose of 2.1 mg/kg, followed by a continuous infusion of 4.2-5.2 mg/kg/h. The initial thiamylal concentration was observed at 7.8 µg/mL, increasing to 35.2 µg/mL before decreasing after dose reduction and cessation. Concurrently, the concentration of concomitant carbamazepine decreased from 5.59 µg/mL to 2.1 µg/mL and recovered as thiamylal concentration decreased. Lesser impacts were noted for other AEDs. CONCLUSIONS: This case report underscored the efficacy of thiamylal in treating RSE. However, it also highlighted the need for clinicians to closely monitor the concentrations of concurrent AEDs, especially carbamazepine, during thiamylal therapy.

16.
Sci Total Environ ; 947: 174721, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002591

RESUMO

The 7-ethoxyresorufin-O-deethylase (EROD) activity was first time characterized in the neotropical fish Cnesterodon decemmaculatus as a biomarker for assessing environmental health in aquatic ecosystems of the Rio de la Plata Basin impacted by organic pollutants agonist of the aryl-hydrocarbon receptor (AhR). Both laboratory and field studies were conducted. Laboratory experiments were run using ß-naphthoflavone (BNF) as an AhR agonist model. A clear concentration-response relationship was found between 1 and 100 µg/L, with a NOEC and LOEC of 1 and 10 µg/L. A fast time-dependent response was observed with a significant induction after 24 h and a plateau from 24 to 48 h up to 264 h of exposure. Differences in basal activity were found between juveniles, females, and males, but induction levels were similar. Both basal activities and induction levels were distinct in the whole body, liver, gill, muscle, brain, and embryos. Fold-change inductions in the respective tissues were: 20, 114, 3, 5, 1, and 14. Maternal transfer and early cyp1a activation were unveiled by embryonic induction. Clear differences in EROD activity were found among juveniles collected in hydrocarbon-polluted streams, beside the La Plata Petrochemical hub, and a reference stream. Similar EROD activities were observed in laboratory and feral fish, usually with values below or above 1,000 pmol/min x mg protein for unexposed or exposed organisms. The study contributes with original information about EROD activity in C. decemmaculatus that encourages the use of both the response as a robust biomarker of exposure and the species as a good sentinel organism to be included in surveillant programs for assessing aquatic pollution by AhR agonist chemicals within the Rio de la Plata Basin within the One Health paradigm.

17.
Proc Natl Acad Sci U S A ; 121(28): e2402407121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959045

RESUMO

Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.


Assuntos
Hemípteros , Proteínas de Insetos , Resistência a Inseticidas , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G , Animais , Hemípteros/genética , Hemípteros/metabolismo , Resistência a Inseticidas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Feminino , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
18.
Int J Biol Macromol ; 276(Pt 1): 133871, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009257

RESUMO

Camptothecin (CPT) is a monoterpenoid indole alkaloid with a wide spectrum of anticancer activity. However, its application is hindered by poor solubility, lack of targeting specificity, and severe side effects. Structural derivatization of CPT and the development of suitable drug delivery systems are potential strategies for addressing these issues. In this study, we discovered that the protein Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) from Homo sapiens catalyzes CPT to yield 9-hydroxycamptothecin (9-HCPT), which exhibits increased water solubility and cytotoxicity. We then created a RNA-protein complex based drug delivery system with enzyme and pH responsiveness and improved the targeting and stability of the nanomedicine through protein module assembly. The subcellular localization of nanoparticles can be visualized using fluorescent RNA probes. Our results not only identified the protein CYP1A1 responsible for the structural derivatization of CPT to synthesize 9-HCPT but also offered potential strategies for enhancing the utilization of silk-based drug delivery systems in tumor therapy.

19.
Sci Rep ; 14(1): 16226, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003307

RESUMO

The classical androgens, testosterone and dihydrotestosterone, together with dehydroepiandrosterone, the precusrsor to all androgens, are generally included in diagnostic steroid evaluations of androgen excess and deficiency disorders and monitored in androgen replacement and androgen suppressive therapies. The C11-oxy androgens also contribute to androgen excess disorders and are still often excluded from clinical and research-based steroids analysis. The contribution of the C11-oxy androgens to the androgen pool has not been considered in androgen deficiency. An exploratory investigation into circulating adrenal and gonadal steroid hormones in men was undertaken as neither the classical androgens nor the C11-oxy androgens have been evaluated in the context of concurrent measurement of all adrenal steroid hormones. Serum androgens, mineralocorticoids, glucocorticoids, progesterones and androgens were assessed in 70 healthy young men using ultra high performance supercritical fluid chromatography and tandem mass spectrometry. Testosterone, 24.5 nmol/L was the most prominent androgen detected in all participants while dihydrotestosterone, 1.23 nmol/L, was only detected in 25% of the participants. The 11-oxy androgens were present in most of the participants with 11-hydroxyandrostenedione, 3.37 nmol, in 98.5%, 11-ketoandrostenedione 0.764 in 77%, 11-hydroxytestosterone, 0.567 in 96% and 11-ketotestosterone: 0.440 in 63%. A third of the participants with normal testosterone and comparable 11-ketotestosterone, had significantly lower dehydroepiandrosterone (p < 0.001). In these males 11-hydroxyandrostenedione (p < 0.001), 11-ketoandrostenedione (p < 0.01) and 11-hydroxytestosterone (p < 0.006) were decreased. Glucocorticoids were also lower: cortisol (p < 0.001), corticosterone (p < 0.001), cortisone (p < 0.006) 11-dehydrocorticosterone (p < 0.001) as well as cortisol:cortisone (p < 0.001). The presence of dehydroepiandrosterone was associated with 16-hydroxyprogesterone (p < 0.001), which was also significantly lower. Adrenal and gonadal steroid analysis showed unexpected steroid heterogeneity in normal young men. Testosterone constitutes 78% of the circulating free androgens with the 11-oxy androgens abundantly present in all participants significantly contributing 22%. In addition, a subset of men were identified with low circulating dehydroepiandrosterone who showed altered adrenal steroids with decreased glucocorticoids and decreased C11-oxy androgens. Analysis of the classical and 11-oxy androgens with the additional measurement of dehydroepiandrosterone and 16-hydroxyprogesterone may allow better diagnostic accuracy in androgen excess or deficiency.


Assuntos
Androgênios , Testosterona , Humanos , Masculino , Adulto , Androgênios/sangue , Adulto Jovem , Testosterona/sangue , Testosterona/análogos & derivados , Hormônios Esteroides Gonadais/sangue , Desidroepiandrosterona/sangue , Desidroepiandrosterona/análogos & derivados , Androstenodiona/sangue , Androstenodiona/análogos & derivados , Espectrometria de Massas em Tandem , Di-Hidrotestosterona/sangue , Adolescente
20.
J Agric Food Chem ; 72(28): 15624-15632, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38952111

RESUMO

Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.


Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Túbulos de Malpighi , Spodoptera , Xenobióticos , Animais , Spodoptera/genética , Spodoptera/efeitos dos fármacos , Spodoptera/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Xenobióticos/metabolismo , Inseticidas/farmacologia , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/enzimologia , Túbulos de Malpighi/efeitos dos fármacos , Resistência a Inseticidas/genética , Inativação Metabólica/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...