Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 721: 137696, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32182464

RESUMO

Residential coals are still inevitable using in developing areas in China. Clean coal briquettes, normally using alkaline substance such as lime or red mud (RM) as the additive, were helpful in pollution emission reduction even without changes of stoves. Studies of atmospheric polycyclic aromatic hydrocarbons (PAHs) emission characteristics from RM clear coal combustion were limited. In this study, emission factors (EFs), sources profiles, and health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were investigated for raw coal chunks and clean coal (with red mud) through combustion experiments. EFs of total PAHs were found to be 160.1 ± 100.9 mg·kg-1 and 19.4 ± 6.1 mg·kg-1 for bituminous and anthracite raw coal chunks (B-C and A-C), respectively. EFs values were highest for parent PAHs (p-PAHs), followed by oxygenated PAHs (o-PAHs), alkylated PAHs (a-PAHs), and nitro PAHs (n-PAHs). EFs of p-PAHs account for 80% and 52% of total PAHs emissions for B-C and A-C, respectively, while those for o-PAHs are 22.9% and 44.9%, demonstrating residential coal combustion as a significant primary source for p-PAHs and o-PAHs. Clean coals were developed through cold-press technology with red mud (RM) as additive, and clean coals with RM contents of 10% are referred to as B-10% (bituminous) and A-10% (anthracite). Compared to raw coals chunks, EFs were reduced from 128.1, 2.5, 29.3 mg·kg-1 and 161.8 µg·kg-1 to 83.5, 1.3, 16.4 mg·kg-1 and 102.2 µg·kg-1 by B-10%, and from 10.1, 0.6, 8.7 mg·kg-1 and 20.6 µg·kg-1 to 11.9, 0.2, 2.4 mg·kg-1 and 15.3 µg·kg-1 by A-10% for p-PAHs, o-PAHs, a-PAHs and n-PAHs, respectively. Diagnostic ratios of 5-Nitroacenaphthene / Acenaphthene (0.02-0.05 for coal, 0.0002 for biomass) can be used to separate residential coal and biomass burning in source analysis. When B-C was replaced by B-10%, both noncancer (0.58 to 0.33 for male, 1.65 to 0.95 for female in hazard quotient) and cancer risks (5.68 × 10-4 to 2.73 × 10-4 for male, 2.63 × 10-3 to 1.27 × 10-3 for female) can be reduced. o-PAHs should be paid more attention because of its high cancer risks caused by 6H-Benzo(C,D)Pyrene-6-One (1.74 × 10-5 for male, 8.07 × 10-5 for female), which are even more than the total risks caused by n-PAHs (3.59 × 10-7 for male, 1.66 × 10-6 for female). Results from this study highlighted the environment and health effects of PAHs originated from residential coal combustion, and proposed an effective way by using clean coal to alleviate the associated negative impacts.


Assuntos
Poluentes Atmosféricos/análise , Utensílios Domésticos , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental
2.
Environ Pollut ; 216: 700-710, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27364465

RESUMO

The aim of this study was to determine and compare the levels of elemental carbon (EC), organic carbon (OC) and polycyclic aromatic hydrocarbons (PAHs) mass concentrations in PM10 particles (particles with aerodynamic diameter less than 10 µm) between seasons (winter and summer) and at different monitoring sites (urban background and rural industrial). Daily samples of airborne particles were collected on pre-fired quartz fibre filters. PM10 mass concentrations were determined gravimetrically. Samples were analysed for OC and EC with the thermal/optical transmittance method (TOT) and for PAHs by high-performance liquid chromatography (HPLC) with a fluorescence detector. Measurements showed seasonal and spatial variations of mass concentrations for carbon species and for all of the measured PAHs (Flu, Pyr, Chry, BaA, BbF, BaP, BkF, BghiP and IP) in PM10 at the urban site and rural monitoring site described here. Diagnostic PAH ratios (Flu/(Flu + Pyr), BaA/(BaA + Cry), IP/(IP + BghiP), BaP/BghiP, IP/BghiP and BaP/(BaP + Chry)) make it possible to assess the sources of pollution, and these showed that diesel vehicles accounted for most pollution at the rural-industrial (RI) site in the summer, whereas coal and wood combustion were the causes of winter pollution. This difference between winter and summer PAH ratios were more expressed at the RI site than at the UB site because at the UB site the predominant heating fuel was gas. The OC/EC ratio yielded the same conclusion. Factor analysis showed that EC and OC originated from traffic at both sites, PAHs with 5 or more benzene rings originated from wood pellets industry or biomass burning, while Pyr and Flu originated from diesel combustion or as a consequence of different atmospheric behaviour - evaporation and participation in oxidation and photo oxidation processes.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/química , Biomassa , Carbono/química , Carvão Mineral , Monitoramento Ambiental/métodos , Indústrias , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/química , Estações do Ano , Emissões de Veículos , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA