RESUMO
Background and aim: Prosopis strombulifera (Lam.) Benth is a rhizomatous shrub native from different zones of Argentine Republic. P. strombulifera aqueous extract (PsAE) has different effects and several biological activities have been reported. The goal of this study was to analyze the activity of PsAE on a murine model of cutaneous leishmaniasis caused by Leishmania amazonensis. Experimental procedure: PsAE was orally administered at 150 mg/animal/day on BALB/c mice infected in the right footpad (RFP) with 1 × 105 promastigotes of L. amazonensis. As a chemotherapeutic control of treatment, animals receive a commercial form of meglumine antimoniate (MA) (Glucantime®, Aventis, Paris, France). Results and conclusion: We observe that the size of RFP lesions of infected mice without treatment showed a grade of inflammation, ulceration and necrosis at the site of infection much greater than that observed with PsAE or MA treatment. Moreover, PsAE was capable of decreasing parasite burden and splenic index. Furthermore, PsAE treated mice showed a significant decrease in O.D. of total anti-Leishmania IgG antibody responses against L. amazonensis. This decrease was similar to those observed when the reference drug, MA, was used. This would indicate that PsAE treatment inhibits or delays disease progression in mice. In conclusion, our findings suggest that PsAE could be a potential candidate to be used, as a new therapeutic strategy, to treat cutaneous leishmaniasis caused by L. amazonensis.
RESUMO
We report clinical, serologic, and immunogenetic studies of a set of monozygotic male twin patients who develop autoimmune thyroiditis and vitiligo associated with the HLA-DRB1*04-DQB1*03:02 and HLA-DRB1*03-DQB1*0201 haplotypes. The patients had detectable anti-thyroid and anti-melanocyte autoantibodies. A critical review is presented regarding the role of MHC II molecules linked to clinical manifestations of various autoimmune diseases displayed in a single patient, as is the case in the twin patients reported here.
RESUMO
Trypanosoma cruzi is the agent of Chagas disease, an infection that affects around 8 million people worldwide. The search for new anti-T. cruzi drugs are relevant, mainly because the treatment of this disease is limited to two drugs. The objective of this study was to investigate the trypanocidal and cytotoxic activity and elucidate the chemical profile of extracts from the roots of the Lonchocarpus cultratus. Roots from L. cultratus were submitted to successive extractions with hexane, dichloromethane, and methanol, resulting in LCH, LCD, and LCM extracts, respectively. Characterization of extracts was done using 1H-RMN, 13C-RMN, CC and TLC. Treatment of T. cruzi forms (epimastigotes, trypomastigotes, and amastigotes) with crescent concentrations of LCH, LCD, and LCM was done for 72, 48, and 48 h, respectively. After this, the percentage of inhibition and IC50/LC50 were calculated. Benznidazole was used as a positive control. Murine macrophages were treated with different concentrations of both extracts for 48 h, and after, the cellular viability was determined by the MTT method and CC50 was calculated. The chalcones derricin and lonchocarpine were identified in the hexane extract, and for the first time in the genus Lonchocarpus, the presence of a dihydrolonchocarpine derivative was observed. Other chalcones such as isocordoin and erioschalcone B were detected in the dichloromethane extract. The dichloromethane extract showed higher activity against all tested forms of T. cruzi than the other two extracts, with IC50 values of 10.98, 2.42, and 0.83 µg/mL, respectively; these values are very close to those of benznidazole. Although the dichloromethane extract presented a cytotoxic effect against mammalian cells, it showed selectivity against amastigotes. The methanolic extract showed the lowest anti-T. cruzi activity but was non-toxic to peritoneal murine macrophages. Thus, the genus Lonchocarpus had demonstrated in the past action against epimastigotes forms of T. cruzi but is the first time that the activity against infective forms is showed, which leading to further studies with in vivo tests.
RESUMO
Microorganisms cause variety of diseases that constitutes a severe threat to mankind. Due to the upsurge of many infectious diseases, there is a high requirement and demand for the development of safety products finished with antimicrobial properties. The study involves the antimicrobial activity of natural cotton coated with copper iodide capped with Hibiscus rosa-sinensis L. flower extract (CuI-FE) which is rich in anthocyanin, cyanidin-3-sophoroside by ultrasonication method. The coated and uncoated cotton fabric was characterised through XRD, SEM, AFM, tensile strength and UV-Visible spectroscopic techniques. XRD confirmed the formation of CuI particles, SEM showed that CuI-FE was prismatic in shape. The average size of CuI-FE particles was found to be 552.45 nm. Anti-bacterial studies showed copper iodide particles to be a potent antimicrobial agent. AFM images confirmed the rupture of bacterial cell walls in the presence of prismatic CuI-FE. In-vitro cytotoxicity investigation of CuI-FE was performed against cancer and spleen cell lines to evaluate the cell viability. Cytotoxicity analysis revealed the IC50 value of 233.93 µg/mL in the presence of CuI-FE. Molecular docking study was also carried out to understand the interaction of CuI-FE with COVID-19 main protease. This paper has given an insight on the usage of CuI-FE coated on the cotton fabric that has proved to have strong inhibition against the nano ranged bacterial, cancerous cell line and a strong interaction with the COVID-19 protease. Such eco-friendly material will provide a safe environment even after the disposable of medical waste from the infectious diseases like influenza and current pandemic like COVID-19.
RESUMO
BACKGROUND: Red oak pollen is an important cause of allergic respiratory disease and it is widely distributed in North America and central Europe. To date, however, red oak pollen allergens have not been identified. Here, we describe the allergenic protein profile from red oak pollen. METHODS: Total proteins were extracted from red oak pollen using a modified phenolic extraction method, and, subsequently, proteins were separated by two-dimensional gel electrophoresis (2DE) for both total protein stain (Coomassie Blue) and immunoblotting. A pool of 8 sera from red oak sensitive patients was used to analyze blotted proteins. Protein spots were analyzed by Mass Spectrometry. RESULTS: Electrophoretic pattern of total soluble proteins showed higher intensity bands in the regions of 26-40 and 47-52 kDa. Two dimensional immunoblots using pool sera from patients revealed four allergenic proteins spots with molecular masses in the range from 50 to 55 kDa. Mass spectrometry analysis identified 8 proteins including Enolase 1 and Enolase 1 chloroplastic, Xylose isomerase (X1 isoform), mitochondrial Aldehyde dehydrogenase, UTP-Glusose-1-phosphate uridylyltransferase, Betaxylosidase/alpha-l-arabinofuranosidase and alpha- and beta subunits of ATP synthase. CONCLUSIONS: This study has identified for first time 8 IgE binding proteins from red oak pollen. These findings will pave the way towards the development of new diagnostic and therapeutic modalities for red oak allergy.
RESUMO
BACKGROUND: Deoxymikanolide is a sesquiterpene lactone isolated from Mikania micrantha and M. variifolia which, has previously demonstrated in vitro activity on Trypanosoma cruzi and in vivo activity on an infected mouse model. PURPOSE: Based on these promising findings, the aim of this study was to investigate the mechanism of action of this compound on different parasite targets. METHODS: The interaction of deoxymikanolide with hemin was examined under reducing and non- reducing conditions by measuring modifications in the Soret absorption band of hemin; the thiol interaction was determined spectrophotometrically through its reaction with 5,5'-dithiobis-2-nitrobenzoate in the presence of glutathione; activity on the parasite antioxidant system was evaluated by measuring the activity of the superoxide dismutase and trypanothione reductase enzymes, together with the intracellular oxidative state by flow cytometry. Superoxide dismutase and trypanothione reductase activities were spectrophotometrically tested. Cell viability, phosphatidylserine exposure and mitochondrial membrane potential were assessed by means of propidium iodide, annexin-V and rhodamine 123 staining, respectively; sterols were qualitatively and quantitatively tested by TLC; ultrastructural changes were analyzed by transmission electron microscopy. Autophagic cells were detected by staining with monodansylcadaverine. RESULTS: Deoxymikanolide decreased the number of reduced thiol groups within the parasites, which led to their subsequent vulnerability to oxidative stress. Treatment of the parasites with the compound produced a depolarization of the mitochondrial membrane even though the plasma membrane permeabilization was not affected. Deoxymikanolide did not affect the intracellular redox state and so the mitochondrial dysfunction produced by this compound could not be attributed to ROS generation. The antioxidant defense system was affected by deoxymikanolide at twenty four hours of treatment, when both an increased oxidative stress and decreased activity of superoxide dismutase and trypanothione reductase (40 and 60% respectively) were observed. Both the oxidative stress and mitochondrial dysfunction induce parasite death by apoptosis and autophagy. CONCLUSION: Based on our results, deoxymikanolide would exert its anti-T cruzi activity as a strong thiol blocking agent and by producing mitochondrial dysfunction.
Assuntos
Lactonas/farmacologia , Sesquiterpenos de Germacrano/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glutationa/metabolismo , Hemina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mikania/química , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Esteróis/biossíntese , Superóxido Dismutase/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma cruzi/ultraestruturaRESUMO
Arylamine N-acetyltransferase (NAT; E.C. 2.3.1.5) enzymes are responsible for the biotransformation of several arylamine and hydrazine drugs by acetylation. In this process, the acetyl group transferred to the acceptor substrate produces NAT deacetylation and, in consequence, it is susceptible of degradation. Sirtuins are protein deacetylases, dependent on nicotine adenine dinucleotide, which perform post-translational modifications on cytosolic proteins. To explore possible sirtuin participation in the enzymatic activity of arylamine NATs, the expression levels of NAT1, NAT2, SIRT1 and SIRT6 in peripheral blood mononuclear cells (PBMC) from healthy subjects were examined by flow cytometry and Western blot. The in situ activity of the sirtuins on NAT enzymatic activity was analyzed by HPLC, in the presence or absence of an agonist (resveratrol) and inhibitor (nicotinamide) of sirtuins. We detected a higher percentage of positive cells for NAT2 in comparison with NAT1, and higher numbers of SIRT1+ cells compared to SIRT6 in lymphocytes. In situ NAT2 activity in the presence of NAM inhibitors was higher than in the presence of its substrate, but not in the presence of resveratrol. In contrast, the activity of NAT1 was not affected by sirtuins. These results showed that NAT2 activity might be modified by sirtuins.
RESUMO
Many studies require the detection and relative quantitation of proteins from cell culture samples using immunoblotting. Limiting factors are the cost of protease inhibitors, the time required to break cells and generate samples, as well as the high risk of protein loss during cell breakage procedures. In addition, a common problem is the viscosity of lysed samples due to the released genomic DNA. As a consequence, the DNA needs to be broken down prior to denaturing polyacrylamide protein gel electrophoresis (SDS-PAGE), e.g. by passing the sample through a syringe gauge needle, sonication, or DNase treatment. In a quest to find a more cost-effective, fast, and yet robust procedure, we found that cell lysis, protein denaturation, and DNA fragmentation can be done in only two steps: harvesting followed by a simple non-laborious 2nd step. Similarly to many pre-existing cell breakage procedures, in our Rapid Protein Extraction (RPE) method, proteins liberated from cells are immediately exposed to a denaturing environment. However, advantages of our method are: â¢No breaking buffer is needed, instead proteins are liberated directly into the denaturing protein loading buffer used for SDS-PAGE. Consequently, our RPE method does not require any expensive inhibitors.â¢The RPE method does not involve post-lysis centrifugation steps; instead all cell material is dissolved during the 2nd step, the mixing-heat-treatment step which is new to this method. This prevents potential protein loss that may occur during centrifugation. In addition, this 2nd step simultaneously shears the genomic DNA, making an additional step for DNA fragmentation unnecessary.â¢The generated samples are suitable for high-quality quantitative immunoblotting. With our RPE method we successfully quantified the phosphorylated forms of protein kinase GCN2 and its substrate eIF2α. In fact, the western signals were stronger and with less background, as compared to samples generated with a pre-existing method.
RESUMO
Recombinant simian IL-15 (siIL-15) was obtained for the preclinical assessment of an anti-human IL-15 vaccine. For this purpose, the cDNA from peripheral blood mononuclear cells of a Macaca fascicularis monkey was cloned into a pIL-2 vector. The siIL-15 was expressed in Escherichia coli strain W3110 as an insoluble protein which accounted for 13% of the total cellular proteins. Inclusion bodies were solubilized in an 8 M urea solution, which was purified by ion exchange and reverse phase chromatography up to 92% purity. The protein identity was validated by electrospray ionization-mass spectrometry, confirming the presence of the amino acids which distinguish the siIL-15 from human IL-15. The purified siIL-15 stimulates the proliferation of cytotoxic T-lymphocytes line (CTLL)-2 and Kit 225 cells with EC50 values of 3.1 and 32.5 ng/mL, respectively. Antisera from modified human IL-15-immunized macaques were reactive to human and simian IL-15 in enzyme-linked immunosorbent assays. Moreover, the anti-human IL-15 antibodies from immune sera inhibited siIL-15 activity in CTLL-2 and Kit 225 cells, supporting the activity and purity of recombinant siIL-15. These results indicate that the recombinant siIL-15 is biologically active in two IL-15-dependent cell lines, and it is also suitable for the preclinical evaluation of an IL-15-based therapeutic vaccine.
Assuntos
Interleucina-15/genética , Macaca fascicularis/genética , Vacinas Sintéticas/genética , Animais , Linhagem Celular , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Interleucina-15/imunologia , Macaca fascicularis/imunologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas Sintéticas/imunologiaRESUMO
Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE (-/-) ) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia.
RESUMO
The present study developed Galleria mellonella and murine infection models for the study of Trichosporon infections. The utility of the developed animal models was demonstrated through the assessment of virulence and antifungal efficacy for 7 clinical isolates of Trichosporon asahii, T. asteroides and T. inkin. The susceptibility of the Trichosporon isolates to several common antifungal drugs was tested in vitro using the broth microdilution and the E-test methods. The E-test method depicted a lower minimal inhibitory concentration (MIC) for amphotericin and a slightly higher MIC for caspofungin, while MICs observed for the azoles were different but comparable between both methods. All three Trichosporon species established infection in both the G. mellonella and immunosuppressed murine models. Species and strain dependent differences were observed in both the G. mellonella and murine models. T. asahii was demonstrated to be more virulent than the other 2 species in both animal hosts. Significant differences in virulence were observed between strains for T. asteroides in the murine model. In both animal models, fluconazole and voriconazole were able to improve the survival of the animals compared to the untreated control groups infected with any of the 3 Trichosporon species. In G. mellonella, amphotericin was not able to reduce mortality in any of the 3 species. In contrast, amphotericin was able to reduce murine mortality in the T. asahii or T. inkin models, respectively. Hence, the developed animal infection models can be directly applicable to the future deeper investigation of the molecular determinants of Trichosporon virulence and antifungal resistance.
Assuntos
Antifúngicos/farmacologia , Modelos Animais de Doenças , Rim/microbiologia , Mariposas/microbiologia , Trichosporon/efeitos dos fármacos , Trichosporon/patogenicidade , Tricosporonose/microbiologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Caspofungina , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fluconazol/uso terapêutico , Hospedeiro Imunocomprometido , Rim/patologia , Rim/fisiopatologia , Rim/ultraestrutura , Larva/microbiologia , Lipopeptídeos , Camundongos , Testes de Sensibilidade Microbiana , Trichosporon/isolamento & purificação , Trichosporon/ultraestrutura , Tricosporonose/tratamento farmacológico , Tricosporonose/mortalidade , Voriconazol/farmacologia , Voriconazol/uso terapêuticoRESUMO
Probiotic strains of Lactobacillus have been studied for their inhibitory effects on Candida albicans. However, few studies have investigated the effect of these strains on biofilm formation, filamentation and C. albicans infection. The objective of this study was to evaluate the influence of Lactobacillus acidophilus ATCC 4356 on C. albicans ATCC 18804 using in vitro and in vivo models. In vitro analysis evaluated the effects of L. acidophilus on the biofilm formation and on the capacity of C. albicans filamentation. For in vivo study, Galleria mellonella was used as an infection model to evaluate the effects of L. acidophilus on candidiasis by survival analysis, quantification of C. albicans CFU/mL, and histological analysis. The direct effects of L. acidophilus cells on C. albicans, as well as the indirect effects using only a Lactobacillus culture filtrate, were evaluated in both tests. The in vitro results showed that both L. acidophilus cells and filtrate were able to inhibit C. albicans biofilm formation and filamentation. In the in vivo study, injection of L. acidophilus into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, the number of C. albicans CFU/mL recovered from the larval hemolymph was lower in the group inoculated with L. acidophilus compared to the control group. In conclusion, L. acidophilus ATCC 4356 inhibited in vitro biofilm formation by C. albicans and protected G. mellonella against experimental candidiasis in vivo.
Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Lactobacillus acidophilus/crescimento & desenvolvimento , Mariposas/microbiologia , Probióticos/farmacologia , Animais , Candidíase/prevenção & controleRESUMO
Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen.
Assuntos
Antígenos de Bactérias/imunologia , Autofagia/efeitos dos fármacos , Interferon gama/metabolismo , Interferon gama/farmacologia , Mycobacterium tuberculosis/imunologia , Tuberculose/tratamento farmacológico , Autofagia/imunologia , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Tuberculose/imunologiaRESUMO
Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.
Assuntos
Bacillus/fisiologia , Biofilmes , Carbonato de Cálcio/metabolismo , Enterobacter/fisiologia , Bacillus/genética , Bacillus/isolamento & purificação , Carbonato de Cálcio/química , Precipitação Química , Enterobacter/genética , Enterobacter/isolamento & purificação , Processos Heterotróficos , México , Dados de Sequência Molecular , Filogenia , Propriedades de SuperfícieRESUMO
StAP3 is a plant aspartic protease with cytotoxic activity toward a broad spectrum of pathogens, including potato and human pathogen microorganisms, and cancer cells, but not against human T cells, human red blood cells or plant cells. For this reason, StAP3 could be a promising and potential drug candidate for future therapies. In this work, the improvement of the performance of StAP3 was achieved by means of a modification with PEG. The separation of a mono-PEGylated StAP3 fraction was easily performed by gel filtration chromatography. The mono-PEGylated StAP3 fraction was studied in terms of in vitro antimicrobial activity, exhibiting higher antimicrobial activity against Fusarium solani spores and Bacillus cereus, but slightly lower activity against Escherichia coli than native protein. Such increase in antifungal activity has not been reported previously for a PEGylated plant protein. In addition, PEGylation did not affect the selective cytotoxicity of StAP3, since no hemolytic activity was observed.