Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.561
Filtrar
1.
Chem Biodivers ; : e202401106, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012926

RESUMO

We developed a novel polylactic-co-glycolic acid (PLGA)-polyamidoamine G4 (PAMAM G4)-polycaprolactone (PCL) nanocarrier for efficient delivery of curcumin (Cur) to A549 lung cancer cells. The synthesized nanocarrier was characterized by applying analytical techniques, FT-IR, DLS, TEM, and TGA. Successful synthesis, nano-size diameter (40 to 80 nm), near neutral surface charge (8.0 mV), and high drug entrapment (11.5%) were measured for the nanocarrier. Controlled (about 5 folds within first 2 h) and pH-sensitive (2 to 3 folds faster within first hours) Cur release observed for PLGA-PAMAM-PCL-Cur. Cell viability test (MTT assay) indicated the high capability of nanocarrier in suppression of A549 cancer cells (21% viability after 24 h of treatment with 200 nM) while did not result in toxicity on MSC normal cells. The IC50 observed for 50 nM at 24 h of post-treatment in A549 cells. The qRT-PCR technique indicated inducing the expression of apoptotic genes (Caspase9 and Bax) by 6-8 folds and suppressing anti-apoptotic gene (Bcl2) by 7 folds. ROS considerably increased in cancer cells as well. This nanocarrier would be a promising drug delivery system against lung cancer.

2.
Biomaterials ; 311: 122699, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981153

RESUMO

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.

3.
J Cosmet Dermatol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979908

RESUMO

INTRODUCTION: The objective of this experiment was to investigate the thermal effects on hyaluronic acid fillers, PCL fillers, and PDO threads when exposed to controlled heat. This study aims to provide insights into how these materials respond to thermal energy, which is crucial for safe and effective cosmetic procedures involving combined modalities. MATERIALS AND METHODS: Cadaveric tissue was utilized to simulate clinical conditions. Hyaluronic acid fillers were injected at approximately 1 mm and 5 mm thicknesses, with variations in G' value (high and low). PCL fillers were similarly injected in 1 mm and 5 mm thicknesses. PDO threads were also inserted. All materials were injected at a depth of 2 cm. A thermometer was used to measure heat penetration, and a multi-wavelength laser was applied to the tissue. The temperature was maintained at 60°C for 5 min to assess whether heat penetrated more than 3 cm in thickness. Observations were made regarding the heat distribution and any physical changes in the fillers and threads. RESULTS: In thick layers, heat accumulated above the PCL filler without penetrating deeper layers. In thin layers, heat penetration was observed. For the HA fillers, heat energy was not blocked, regardless of the G' value or thickness. For the threads, no significant heat blockage effect was observed. For all materials, no visual changes were detected in any of the materials due to temperature exposure. DISCUSSION: The findings suggest that the thickness and composition of fillers significantly influence heat penetration. Thick PCL fillers act as a thermal barrier, whereas thin PCL fillers allow deeper heat penetration. Hyaluronic acid fillers do not impede heat transfer, regardless of their physical properties. PDO threads do not exhibit any notable thermal resistance. These insights are essential for optimizing the safety and efficacy of combined filler and energy-based device treatments in esthetic medicine.

4.
Adv Biol (Weinh) ; : e2400184, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971965

RESUMO

Triple-negative breast cancer (TNBC) is the most invasive type of breast cancer with high risk of brain metastasis. To better understand interactions between breast tumors with the brain extracellular matrix (ECM), a 3D cell culture model is implemented using a thiolated hyaluronic acid (HA-SH) based hydrogel. The latter is used as HA represents a major component of brain ECM. Melt-electrowritten (MEW) scaffolds of box- and triangular-shaped polycaprolactone (PCL) micro-fibers for hydrogel reinforcement are utilized. Two different molecular weight HA-SH materials (230 and 420 kDa) are used with elastic moduli of 148 ± 34 Pa (soft) and 1274 ± 440 Pa (stiff). Both hydrogels demonstrate similar porosities. The different molecular weight of HA-SH, however, significantly changes mechanical properties, e.g., stiffness, nonlinearity, and hysteresis. The breast tumor cell line MDA-MB-231 forms mainly multicellular aggregates in both HA-SH hydrogels but sustains high viability (75%). Supplementation of HA-SH hydrogels with ECM components does not affect gene expression but improves cell viability and impacts cellular distribution and morphology. The presence of other brain cell types further support numerous cell-cell interactions with tumor cells. In summary, the present 3D cell culture model represents a novel tool establishing a disease cell culture model in a systematic way.

5.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000688

RESUMO

Microplastics' spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To further improve the biodegradability of PCL, we selected a completely new protein that has not been used before as a functional filler to incorporate it into PCL, aiming to develop an environmentally friendly biocomposite material. This novel protein is derived from the mucus bubbles of the violet sea snail (VSS, Janthina globosa), which is a strong bio-derived material that is 100% degradable in the sea environment by microorganisms. Two types of PCL/bubble composites, PCL/b1 and PCL/b5, were prepared with mass ratios of PCL to bubble powder of 99:1 and 95:5, respectively. We investigated the thermal properties, mechanical properties, biodegradability, surface structure, and crystal structure of the developed PCL/bubble composites. The maximum biochemical oxygen demand (BOD) degradation for PCL/b5 reached 96%, 1.74 times that of pure PCL (≈55%), clearly indicating that the addition of protein fillers significantly enhanced the biodegradability of PCL. The surface morphology observation results through scanning electron microscopy (SEM) definitely confirmed the occurrence of degradation, and it was found that PCL/b5 underwent more significant degradation compared to pure PCL. The water contact angle measurement results exhibited that all sheets were hydrophobic (water contact angle > 90°) before the BOD test and showed the changes in surface structure after the BOD test due to the newly generated indentations on the surface, which led to an increase in surface toughness and, consequently, an increase in surface hydrophobility. A crystal structure analysis by wide-angle X-ray scattering (WAXS) discovered that the amorphous regions were decomposed first during the BOD test, and more amorphous regions were decomposed in PCL/b5 than in PCL, owing to the addition of the bubble protein fillers from the VSS. The differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) results suggested that the addition of mucus bubble protein fillers had only a slight impact on the thermal properties of PCL. In terms of mechanical properties, compared to pure PCL, the mucus-bubble-filler-added composites PCL/b1 and PCL/b5 exhibited slightly decreased values. Although the biodegradability of PCL was significantly improved by adding the protein fillers from mucus bubbles of the VSS, enhancing the mechanical properties at the same time poses the next challenging issue.

6.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000789

RESUMO

Electrospun drug-eluting fibers have demonstrated potentials in topical drug delivery applications, where drug releases can be modulated by polymer fiber compositions. In this study, blend fibers of polycaprolactone (PCL) and polyethylene oxide (PEO) at various compositions were electrospun from 10 wt% of polymer solutions to encapsulate a model drug of ibuprofen (IBP). The results showed that the average polymer solution viscosities determined the electrospinning parameters and the resulting average fiber diameters. Increasing PEO contents in the blend PCL/PEO fibers decreased the average elastic moduli, the average tensile strength, and the average fracture strains, where IBP exhibited a plasticizing effect in the blend PCL/PEO fibers. Increasing PEO contents in the blend PCL/PEO fibers promoted the surface wettability of the fibers. The in vitro release of IBP suggested a transition from a gradual release to a fast release when increasing PEO contents in the blend PCL/PEO fibers up to 120 min. The in vitro viability of blend PCL/PEO fibers using MTT assays showed that the fibers were compatible with MEF-3T3 fibroblasts. In conclusion, our results explained the scientific correlations between the solution properties and the physicomechanical properties of electrospun fibers. These blend PCL/PEO fibers, having the ability to modulate IBP release, are suitable for topical drug delivery applications.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124800, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39024784

RESUMO

Scaffolds acting as an artificial matrix for cell proliferation are one of the bone tissue engineering approaches to the treatment of bone tissue defects. In the presented study, novel multicomponent scaffolds composed of a poly(ε-caprolactone) (PCL), phenolic compounds such as tannic (TA) and gallic acids (GA), and nanocomponents such as silica-coated magnetic iron oxide nanoparticles (MNPs-c) and functionalized multi-walled carbon nanotubes (CNTs) have been produced as candidates for such artificial substitutes. Well-developed interconnected porous structures were observed using scanning electron microscopy (SEM). Raman spectra showed that the highly crystalline nature of PCL was reduced by the addition of nanoadditives. In the case of scaffolds containing MNPs-c and TA, the formation of a Fe-TA complex was concluded because characteristic bands of chelation of the Fe3+ ion by phenolic catechol oxygen appeared. It was found that the necessary conditions for the crystallization of the PCL/MNPs-c/TA are for the catechol groups to be able to penetrate the porous silica shell of MNPs-c, as during experiment with MNPs-c and TA without polymer, no such complexation was observed. Moreover, the number of catechol groups, the spatial structure and molecular size of this phenolic compound are also crucial for complexation process because GA does not form complexes. Therefore, the PCL/CNTs/MNPs-c/TA scaffolds are interesting candidates to consider for their possible medical applications.

8.
ACS Biomater Sci Eng ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026391

RESUMO

Transformation of a fibrous mat into a three-dimensional (3D) scaffold opens up abundant innovative prospects in biomedical research, particularly for studying both soft as well as hard tissues. Electrospun nanofibers, which mimic the extracellular matrix have attracted significant attention in various studies. This research focuses on rapidly converting a fibrous mat made of polycaprolactone (PCL)/pluronic F-127 (PF-127) with different percentages of monetite calcium phosphate (MCP) into desirable 3D matrix cotton using a unique gas foaming technology. These matrix cottons possess biomimetic properties and have oriented porous structures. Using this innovative technique, various shapes of 3D matrix cotton, such as squares, hollow tubes, and other customizable forms, were successfully produced. Importantly, these 3D matrix cottons showed a consistent distribution of monetite particles with total porosity ranging from 90% to 98%. The structure of the 3D matrix cotton, its water/blood absorption capacity, the potential for causing non-hemolysis, and rapid hemostatic properties were thoroughly investigated. Additionally, periodontal cells were cultured on the 3D matrix cotton to assess their viability and morphology, revealing promising results. Furthermore, a coculture study involving NIH-3T3 and MG-63 cells on the 3D matrix cotton showed spheroidal formation within 24 h. Notably, in vitro assessments indicated that the matrix cotton containing 15% monetite (PCL-MMC15%) exhibited superior absorbent capabilities, excellent cell viability, and rapid hemostatic characteristics. Subsequently, the effectiveness of PCL-MMC15% in promoting mandibular bone regeneration was evaluated through an in vivo study on rabbits using a mandibular injury model. The results demonstrated that PCL-MMC15% facilitated the resolution of defects in the mandibular region by initiating new bone formation. Therefore, the presented 3D matrix cotton (PCL-MMC15%) shows significant promise for applications in both mandibular bone regeneration and hemostasis.

9.
Curr Oncol Rep ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954316

RESUMO

PURPOSEOF REVIEW: Plasma Cell Leukemia (PCL) is a very rare and highly aggressive form of plasma cell dyscrasia. This review seeks to evaluate the outcomes of PCL in the context of combination novel agent therapy and stem cell transplant (SCT) protocols. RECENT FINDINGS: The diagnostic criteria for PCL have now evolved to include patients with 5% circulating PC. While management remains challenging, the incorporation of novel agent-based induction regimen has significantly improved early mortality and reduced attrition of patients proceeding to SCT. In recent prospective clinical trials, patients with PCL demonstrated an overall response rates of 69% to 86%, with progression-free and overall survival ranging from 13.8 to 15.5 months and 24.8 to 36.3 months, respectively. B-cell lymphoma 2 (BCL2) inhibitors, such as venetoclax present a targeted intervention opportunity for patients with PCL with t(11;14). Dedicated clinical trials tailored to PCL are crucial, integrating newer therapies in the frontline setting to further optimize responses and enhance overall outcomes.

10.
Sci Rep ; 14(1): 16396, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013921

RESUMO

Most of the conditions involving cartilaginous tissues are irreversible and involve degenerative processes. The aim of the present study was to fabricate a biocompatible fibrous and film scaffolds using electrospinning and casting techniques to induce chondrogenic differentiation for possible application in cartilaginous tissue regeneration. Polycaprolactone (PCL) electrospun nanofibrous scaffolds and PCL film were fabricated and incorporated with multi-walled carbon nanotubes (MWCNTs). Thereafter, coating of chondroitin sulfate (CS) on the fibrous and film structures was applied to promote chondrogenic differentiation of human dental pulp stem cells (hDPSCs). First, the morphology, hydrophilicity and mechanical properties of the scaffolds were characterized by scanning electron microscopy (SEM), spectroscopic characterization, water contact angle measurements and tensile strength testing. Subsequently, the effects of the fabricated scaffolds on stimulating the proliferation of human dental pulp stem cells (hDPSCs) and inducing their chondrogenic differentiation were evaluated via electron microscopy, flow cytometry and RT‒PCR. The results of the study demonstrated that the different forms of the fabricated PCL-MWCNTs scaffolds analyzed demonstrated biocompatibility. The nanofilm structures demonstrated a higher rate of cellular proliferation, while the nanofibrous architecture of the scaffolds supported the cellular attachment and differentiation capacity of hDPSCs and was further enhanced with CS addition. In conclusion, the results of the present investigation highlighted the significance of this combination of parameters on the viability, proliferation and chondrogenic differentiation capacity of hDPSCs seeded on PCL-MWCNT scaffolds. This approach may be applied when designing PCL-based scaffolds for future cell-based therapeutic approaches developed for chondrogenic diseases.


Assuntos
Diferenciação Celular , Condrogênese , Sulfatos de Condroitina , Polpa Dentária , Nanofibras , Nanotubos de Carbono , Poliésteres , Células-Tronco , Alicerces Teciduais , Humanos , Polpa Dentária/citologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Nanofibras/química , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Alicerces Teciduais/química , Nanotubos de Carbono/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Engenharia Tecidual/métodos
11.
Heliyon ; 10(11): e31821, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38873676

RESUMO

Background: Biomaterials can improve cardiac repair combined with transplantation of bone marrow mononuclear cells (BMMNCs). In this study, we compared the phenotype and cardiac repair between human heart valve-derived scaffold (hHVS) and natural protein/polycaprolactone (NP/PCL) anchored BMNNCs. Methods and results: BMMNCs were obtained from mice five days following myocardial infarction. Subsequently, BMMNCs were separately cultured on hHVS and PCL. Proliferation and cardiomyogenic differentiation were detected in vitro. Cardiac function was measured after transplantation of cell-seeded cardiac patch on MI mice. After that, the BMMNCs were collected for mRNA sequencing after culturing on the scaffolds. Upon anchoring onto hHVS or PCL, BMMNCs exhibited an increased capacity for proliferation in vitro, however, the cells on hHVS exhibited superior cardiomyogenic differentiation ability. Moreover, both BMMNCs-seeded biomaterials effectively improved cardiac function after 4 weeks of transplantation, with reduced infarction area and restricted LV remodeling. Cell-seeded hHVS was superior to cell-seeded PCL. Conclusion: BMMNCs on hHVS showed better capacity in both cell cardiac repairing and improvement for cardiac function than on PCL. Compared with seeded onto PCL, BMMNCs on hHVS had 253 genes up regulated and 189 genes down regulated. The reason for hHVS' better performance than PCL as a scaffold for BMMNCs might be due to the fact that optimized method of decellularization let more cytokines in ECM retained.

12.
Biotechnol Bioeng ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877726

RESUMO

Despite various clinical options, human anterior cruciate ligament (ACL) lesions do not fully heal. Biomaterial-guided gene therapy using recombinant adeno-associated virus (rAAV) vectors may improve the intrinsic mechanisms of ACL repair. Here, we examined whether poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can deliver rAAV vectors coding for the reparative basic fibroblast growth factor (FGF-2) and transforming growth factor beta (TGF-ß) in human mesenchymal stromal cells (hMSCs) as a source of implantable cells in ACL lesions. Efficient and sustained rAAV-mediated reporter (red fluorescent protein) and therapeutic (FGF-2 and TGF-ß) gene overexpression was achieved in the cells for at least 21 days in particular with pNaSS-grafted PCL films relative to all other conditions (up to 5.2-fold difference). Expression of FGF-2 and TGF-ß mediated by rAAV using PCL films increased the levels of cell proliferation, the DNA contents, and the deposition of proteoglycans and of type-I and -III collagen (up to 2.9-fold difference) over time in the cells with higher levels of transcription factor expression (Mohawk, Scleraxis) (up to 1.9-fold difference), without activation of inflammatory tumor necrosis alpha especially when using pNaSS-grafted PCL films compared with the controls. Overall, the effects mediated by TGF-ß were higher than those promoted by FGF-2, possibly due to higher levels of gene expression achieved upon rAAV gene transfer. This study shows the potential of using functionalized PCL films to apply rAAV vectors for ACL repair.

13.
J Orthop Surg Res ; 19(1): 362, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890683

RESUMO

PURPOSE: The purpose of this study was to analyse the difference between arthroscopic fixation and open reduction internal fixation (ORIF) of posterior cruciate ligament (PCL) tibial avulsion fractures. METHODS: This retrospective study analysed patients with an acute PCL tibial avulsion fracture who underwent surgical treatment at our hospital and follow-up for at least 24 months. Variables based on sex, age, Meyers-McKeever type, surgical method, meniscus tear, external fixation, labour or sports, Lysholm knee score, IKDC score, and KT-1000 value were also recorded. Multifactor unconditional logistic regression and Student's t test with 1:1 propensity score matching (PSM) to remove confounding factors were used for analysis. RESULTS: Sixty-five cases achieved knee function graded as "good" or better, and 9 cases not. Single-factor analysis indicated that Meyers-McKeever type (χ2 = 4.669, P = 0.031) and surgical approach (χ2 = 9.428, P = 0.002) are related to functional outcomes. Multifactorial logistic regression analysis further confirmed that Meyers-McKeever typing (OR = 10.763, P = 0.036, [95% CI 1.174-98.693]) and surgical approach (OR = 9.274, P = 0.008, [95% CI 1.794-47.934]) are independent risk factors affecting prognosis. In addition, PSM verified significant differences in the Lysholm score (t = 3.195, P = 0.006), IKDC score (t = 4.703, P = 0.000) and A-KT/H-KT (t = 2.859, P = 0.012). However, the affected-side KT-1000 value (A-KT, mm, t = 1.225, P = 0.239) and healthy-side KT-1000 value (H-KT, mm, t = 1.436, P = 0.172) did not significantly differ between the two groups. The proportions of cases in which the Lysholm score, IKDC and A-KT/H-KT exceeded the minimal clinically important difference (MCID) were 62.5% (20/32), 62.5% (20/32) and 93.75% (30/32), respectively. CONCLUSION: Compared with ORIF, an arthroscopic approach for PCL tibial avulsion fractures achieves better results. LEVEL OF EVIDENCE: Retrospective cohort study; Level II.


Assuntos
Artroscopia , Fratura Avulsão , Ligamento Cruzado Posterior , Fraturas da Tíbia , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Fraturas da Tíbia/cirurgia , Fraturas da Tíbia/diagnóstico por imagem , Artroscopia/métodos , Ligamento Cruzado Posterior/cirurgia , Ligamento Cruzado Posterior/lesões , Pessoa de Meia-Idade , Fratura Avulsão/cirurgia , Fratura Avulsão/diagnóstico por imagem , Adulto Jovem , Resultado do Tratamento , Redução Aberta/métodos , Escore de Lysholm para Joelho , Seguimentos , Adolescente , Fixação Interna de Fraturas/métodos
14.
Front Psychol ; 15: 1216435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911962

RESUMO

Introduction: There is controversy regarding the comorbidity of posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI). The present study translated the PTSD Checklist for DSM-5 (PCL-5) to Spanish and validated it in a sample of patients with TBI 6 months after the injury. Methods: The study included 233 patients (162 males and 71 females) recruited from four Spanish hospitals within 24 h of traumatic brain injury. A total of 12.2% of the sample met the provisional PTSD diagnostic criteria, and the prevalence was equal between male and female participants. Results: The analysis confirmed the internal consistency of the translated instrument (α = 0.95). The concurrent validity of the instrument was confirmed based on high correlation coefficients of 0.7 and 0.74 with the General Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire (PHQ-9), respectively. Exploratory factor analysis also confirmed that the items on the PCL-5 can be differentiated from the GAD-7 and PHQ-9 items. Confirmatory factor analysis (CFA) was used to examine the structural validity of the Spanish translation of the PCL-5 with three different models. CFA partially confirmed the four-factor PTSD model, whereas both the six-factor anhedonia model and the seven-factor hybrid model showed adequate fit. However, the difference between the anhedonia and hybrid models was not statistically significant; moreover, both models showed signs of overfitting. Therefore, the utility of these models should be reexamined in future studies. Conclusion: Overall, the results suggest that the Spanish translation of the PCL-5 is a reliable and valid instrument for screening PTSD symptoms among Spanish TBI patients. The Spanish translation of the PCL-5 is also presented in the manuscript.

15.
Int J Biol Macromol ; 274(Pt 1): 133287, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909730

RESUMO

Inspired by the natural antimicrobial effect of the topographical features of insect wings, this study prepared urchin-like gold nanoparticles (UGNPs) and deposited them on poly(ε-caprolactone) (PCL)/chitosan (P/C) electrospun nanofiber film to strengthen antibacterial activities of this active packaging. Results showed that L-Dopa was a suitable reducing agent to prepare UGNPs, and the spine length of UGNPs increased from 21.23 to 35.83 nm as the molar ratio of L-Dopa:HAuCl4 increased from 1 to 3. As the nanofiber film was immersed in the nanoparticle solution for a longer time, the UGNP content in P/C nanofibers increased. As the spine length of UGNPs and depositing UGNP content increased, the inhibition rate against S. aureus and E. coli. of P/C nanofiber film increased. In addition, P/C nanofiber film deposited with UGNPs also exhibited good thermal stability, hydrophilicity, mechanical strength, and water vapor permeability, exhibiting its potential as an antibacterial active packaging.

16.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928356

RESUMO

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Assuntos
Membrana Basal , Diferenciação Celular , Células Epiteliais , Poliésteres , Humanos , Poliésteres/química , Membrana Basal/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Nanofibras/química , Células Cultivadas , Brônquios/citologia , Brônquios/metabolismo
17.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
18.
Biomater Adv ; 162: 213902, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38823255

RESUMO

The craniofacial region is characterized by its intricate bony anatomy and exposure to heightened functional forces presenting a unique challenge for reconstruction. Additive manufacturing has revolutionized the creation of customized scaffolds with interconnected pores and biomimetic microarchitecture, offering precise adaptation to various craniofacial defects. Within this domain, medical-grade poly(ε-caprolactone) (PCL) has been extensively used for the fabrication of 3D printed scaffolds, specifically tailored for bone regeneration. Its adoption for load-bearing applications was driven mainly by its mechanical properties, adjustable biodegradation rates, and high biocompatibility. The present review aims to consolidating current insights into the clinical translation of PCL-based constructs designed for bone regeneration. It encompasses recent advances in enhancing the mechanical properties and augmenting biodegradation rates of PCL and PCL-based composite scaffolds. Moreover, it delves into various strategies improving cell proliferation and the osteogenic potential of PCL-based materials. These strategies provide insight into the refinement of scaffold microarchitecture, composition, and surface treatments or coatings, that include certain bioactive molecules such as growth factors, proteins, and ceramic nanoparticles. The review critically examines published data on the clinical applications of PCL scaffolds in both extraoral and intraoral craniofacial reconstructions. These applications include cranioplasty, nasal and orbital floor reconstruction, maxillofacial reconstruction, and intraoral bone regeneration. Patient demographics, surgical procedures, follow-up periods, complications and failures are thoroughly discussed. Although results from extraoral applications in the craniofacial region are encouraging, intraoral applications present a high frequency of complications and related failures. Moving forward, future studies should prioritize refining the clinical performance, particularly in the domain of intraoral applications, and providing comprehensive data on the long-term outcomes of PCL-based scaffolds in bone regeneration. Future perspective and limitations regarding the transition of such constructs from bench to bedside are also discussed.


Assuntos
Regeneração Óssea , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Humanos , Engenharia Tecidual/métodos , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Materiais Biocompatíveis/química , Animais
19.
Int J Biol Macromol ; 273(Pt 1): 132891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848852

RESUMO

Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.


Assuntos
Osso e Ossos , Compostos de Cálcio , Nanopartículas , Óxidos , Poliésteres , Amido , Engenharia Tecidual , Alicerces Teciduais , Amido/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Nanopartículas/química , Óxidos/química , Compostos de Cálcio/química , Ratos , Camundongos , Materiais Biocompatíveis/química , Ratos Wistar , Linhagem Celular , Nanocompostos/química
20.
Tissue Cell ; 89: 102428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878657

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (MI/R) occurs due to temporary or permanent interruptions in the coronary and circulatory system, indirectly affecting kidney function through reduced cardiac output for metabolic needs. In this study, the aim was to explore the indirect effects of using human amniotic membrane mesenchymal stem cells (hAMSCs) with the PGS-co-PCL/PGC/PPy/Gelatin scaffold in male rats with renal failure induced by miocardial ischemia-reperfusion. METHODS: MI/R injury was induced in 48 male Wistar rats through left anterior descending artery ligation, divided into four groups (n=12); control group, cell group, scaffold group, and celss+scaffold group. Evaluations were conducted at two and thirty days post MI/R injury, encompassing echocardiography, biochemical, inflammatory markers analysis, and histological assessment. RESULTS: Echocardiographic findings exhibited notable enhancement in ejection fraction, fractional shortening, and stroke volume of treated groups compared to controls after 30 days (P< 0.05). Serum creatinine (P< 0.001) and urea (P< 0.05) levels significantly decreased in the scaffold+cells group) compared to the control group. The treated cells+ scaffold group displayed improved kidney structure, evidenced by larger glomeruli and reduced Bowman's space compared to the control group (P< 0.01). Immunohistochemical analysis indicated reduced TNF-α protein in the scaffold+ cells group (P< 0.05) in contrast to the control group (P< 0.05). Inflammatory factors IL-6, TNF-α, and AKT gene expression in renal tissues were improved in scaffold+ cells-treated animals. CONCLUSION: Our research proposes the combination of hAMSCs and the PGS-co-PCL/PGC/PPy/Gelatin scaffold in MI/R injured rats appears to enhance renal function and reduce kidney inflammation by improving cardiac output.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...