Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 121: 99-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059418

RESUMO

Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Receptores da Fenciclidina/metabolismo , Espermatogênese/genética , Testículo/fisiologia , Animais , Drosophila , Masculino
2.
Toxicol Sci ; 177(2): 305-315, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32647867

RESUMO

Studies have shown that mammalian testes, in particular the Sertoli cells, are highly susceptible to exposure of environmental toxicants, such as cadmium, perfluorooctanesulfonate, phthalates, 2,5-hexanedione and bisphenol A. However, important studies conducted by reproductive toxicologists and/or biologists in the past have been treated as toxicology reports per se. Yet, many of these studies provided important mechanistic insights on the toxicant-induced testis injury and reproductive dysfunction, relevant to the biology of the testis and spermatogenesis. Furthermore, recent studies have shown that findings obtained from toxicant models are exceedingly helpful tools to unravel the biology of testis function in particular spermatogenesis, including specific cellular events associated with spermatid transport to support spermiogenesis and spermiation. In this review, we critically evaluate some recent data, focusing primarily on the molecular structure and role of microtubules in cellular function, illustrating the importance of toxicant models to unravel the biology of microtubule cytoskeleton in supporting spermatogenesis, well beyond information on toxicology. These findings have opened up some potential areas of research which should be carefully evaluated in the years to come.


Assuntos
Citoesqueleto , Substâncias Perigosas/toxicidade , Espermatogênese , Animais , Masculino , Microtúbulos , Células de Sertoli , Testículo
3.
Curr Opin Cell Biol ; 62: 159-167, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31884395

RESUMO

Polarity is the basis for the generation of cell diversity, as well as the organization, morphogenesis, and functioning of tissues. Studies in Caenorhabditis elegans have provided much insight into PAR-protein mediated polarity; however, the molecules and mechanisms critical for cell polarization within the plane of epithelia have been identified in other systems. Tissue polarity in C. elegans is organized by Wnt-signaling with some resemblance to the Wnt/planar cell polarity (PCP) pathway, but lacking core PCP protein functions. Nonetheless, recent studies revealed that conserved PCP proteins regulate directed cell migratory events in C. elegans, such as convergent extension movements and neurite formation and guidance. Here, we discuss the latest insights and use of C. elegans as a PCP model.


Assuntos
Caenorhabditis elegans/metabolismo , Polaridade Celular/fisiologia , Animais , Movimento Celular
4.
Spermatogenesis ; 6(2): e1218408, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635303

RESUMO

Cell polarity is crucial to development since apico-basal polarity conferred by the 3 polarity protein modules (or complexes) is essential during embryogenesis, namely the Par (partition defective)-, the CRB (Crumbs)-, and the Scribble-based polarity protein modules. While these protein complexes and their component proteins have been extensively studied in Drosophila and C. elegans and also other mammalian tissues and/or cells, their presence and physiological significance in the testis remain unexplored until the first paper on the Par-based protein published in 2008. Since then, the Par-, the Scribble- and the CRB-based protein complexes and their component proteins in the testis have been studied. These proteins are known to confer Sertoli and spermatid polarity in the seminiferous epithelium, and they are also integrated components of the tight junction (TJ) and the basal ectoplasmic specialization (ES) at the Sertoli cell-cell interface near the basement membrane, which in turn constitute the blood-testis barrier (BTB). These proteins are also found at the apical ES at the Sertoli-spermatid interface. Thus, these polarity proteins also play a significant role in regulating Sertoli and spermatid adhesion in the testis through their actions on actin-based cytoskeletal function. Recent studies have shown that these polarity proteins are having antagonistic effects on the BTB integrity in which the Par6- and CRB3-based polarity complexes promotes the integrity of the Sertoli cell TJ-permeability barrier, whereas the Scribble-based complex promotes restructuring/remodeling of the Sertoli TJ-barrier function. Herein, we carefully evaluate these findings and provide a hypothetic model regarding their role in the testis in the context of the functions of these polarity proteins in other epithelia, so that better experiments can be designed in future studies to explore their significance in spermatogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA