RESUMO
Phosphoenolpyruvate carboxykinase (PEPCK) catalyses the reversible reaction of decarboxylation and phosphorylation of oxaloacetate (OAA) to generate phosphoenolpyruvate (PEP) and CO2 playing mainly a gluconeogenic role in green algae. We found two PEPCK isoforms in Chlamydomonas reinhardtii and we cloned, purified and characterised both enzymes. ChlrePEPCK1 is more active as decarboxylase than ChlrePEPCK2. ChlrePEPCK1 is hexameric and its activity is affected by citrate, phenylalanine and malate, while ChlrePEPCK2 is monomeric and it is regulated by citrate, phenylalanine and glutamine. We postulate that the two PEPCK isoforms found originate from alternative splicing of the gene or regulated proteolysis of the enzyme. The presence of these two isoforms would be part of a mechanism to finely regulate the biological activity of PEPCKs.
Assuntos
Chlamydomonas reinhardtii , Fosfoenolpiruvato , Chlamydomonas reinhardtii/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Isoformas de Proteínas , Fenilalanina , CitratosRESUMO
Most epiphytes are found in low-nutrient environments with an intermittent water supply. To deal with water limitation, many bromeliads perform crassulacean acid metabolism (CAM), such as Guzmania monostachia, which shifts from C3 to CAM and can recycle CO2 from the respiration while stomata remain closed during daytime and nighttime (CAM-idling mode). Since the absorbing leaf trichomes can be in contact with organic (urea) and inorganic nutrients (NO3 -, NH4 +) and the urea hydrolysis releases NH4 + and CO2, we hypothesized that urea can integrate the N and C metabolism during periods of severe drought. Under this condition, NH4 + can be assimilated into amino acids through glutamine synthetase (GS), while the CO2 can be pre-fixated by phosphoenolpyruvate carboxylase (PEPC). In this context, we evaluated the foliar transcriptome of G. monostachia to compare the relative gene expression of some genes involved with CAM and the N metabolism when bromeliads were submitted to 7days of drought. We also conducted a controlled experiment with an extended water deficit period (21days) in which bromeliads were cultivated in different N sources (urea, NH4 +, and NO3 -). Our transcriptome results demonstrated an increment in the expression of genes related to CAM, particularly those involved in the carboxylation metabolism (PEPC1, PPCK, and NAD-MDH), the movement of malate through vacuolar membrane (ALMT9), and the decarboxylation process (PEPCK). Urea stimulated the expression of PEPC1 and ALMT9, while Urease transcripts increased under water deficit. Under this same condition, GS1 gene expression increased, indicating that the NH4 + from urea hydrolysis can be assimilated in the cytosol. We suggest that the link between C and N metabolism occurred through the supply of carbon skeleton (2-oxoglutarate, 2-OG) by the cytosolic isocitrate dehydrogenase since the number of NADP-ICDH transcripts was also higher under drought conditions. These findings indicate that while urea hydrolysis provides NH4 + that can be consumed by glutamine synthetase-cytosolic/glutamate synthase (GS1/GOGAT) cycle, the CO2 can be used by CAM, maintaining photosynthetic efficiency even when most stomata remain closed 24h (CAM-idling) as in the case of a severe water deficit condition. Thus, we suggest that urea could be used by G. monostachia as a strategy to increase its survival under drought, integrating N and C metabolism.
RESUMO
All 225 Fasciola flukes obtained from domestic animals (73 cattle, 7 sheep and 1 pig) of 18 distinct geographic areas in Ecuador-South America, were identified as Fasciola hepatica, based on molecular analyses of nuclear pepck and pold genes, and mitochondrial nad1gene as well as the morphological observation of sperm within the seminal vesicles. Fasciola gigantica and parthenogenic Fasciola forms endemic to Asian countries were not found in this study, although zebu cattle and water buffalos have introduced into South America from Asia; this could be due to the absence of suitable intermediate host snails. The results of pepck analysis using multiplex PCR developed previously showed that 32 of the flukes could not be confirmed as F. hepatica, suggesting that the method is unreliable for the accurate discrimination of F. hepatica, and that pepck gene of the species consists of multiple loci, not a single locus. The results of genetic diversity, phylogenetic, and network analyses based on mitochondrial nad1 sequences suggest that F. hepatica populations in South America, including Ecuador, formed from the ancestral F. hepatica individuals introduced into the continent along with anthropogenic movement of livestock infected with the species.
Assuntos
Fasciola hepatica/classificação , Variação Genética , Animais , Equador , Fasciola/classificação , Fasciola/genética , Fasciola/isolamento & purificação , Fasciola hepatica/genética , Fasciola hepatica/isolamento & purificação , Proteínas de Helminto/análise , Proteínas Mitocondriais/análise , FilogeniaRESUMO
In T. cruzi, a causative agent of Chagas disease, phosphoenolpyruvate carboxykinase (TcPEPCK) is associated with carbohydrate catabolism. Due to its importance in the metabolism of the parasite, it has become a promising target for the development of new drugs against Chagas disease. Aiming to investigate different approaches for ligands screening, TcPEPCK was immobilized on amine-terminated magnetic beads (TcPEPCK-MB) and kinetically characterized by liquid chromatography tandem mass spectrometry activity assay with a KMapp value of 10 ± 1 µM to oxaloacetate as substrate. Natural products library affords highly diverse molecular frameworks through their secondary metabolites, herein a ligand fishing TcPEPCK-MB assay is described for prospecting ligands in four ethanolic extracts of Brazilian Cerrado plants: Qualea grandiflora (Vochysiaceae), Diospyros burchellii (Ebenaceae), Anadenanthera falcata (Fabaceae) and Byrsonima coccolobifolia (Malpighiaceae). The chemical characterization of eleven identified ligands was carried out by liquid chromatography tandem high-resolution mass spectrometry experiments. Senecic acid, syneilesinolide A, phytosphingosine and vanillic acid 4-glucopyranoside are herein reported for the first time for Q. grandiflora, D. burchellii, A. falcata, respectively. In addition, the specificity of the assay was observed since only catechin was fished out from the ethanolic extract of B. coccolobifolia leaves, despite the presence of epicatechin epimer.
Assuntos
Doença de Chagas , Brasil , Humanos , Fenômenos Magnéticos , Fosfoenolpiruvato , Extratos VegetaisRESUMO
PURPOSE: NAFLD is a hepatic component of type 2 diabetes mellitus (T2D), in which impaired hepatic glucose production plays an important role. Inhibitors of sodium glucose transporter 2 (SGLT2) reduce glycemia and exert beneficial effects on diabetic complications. Recently, dual SGLT1/2 inhibition has been proposed to be more effective in reducing glycemia. We hypothesized that improving hepatic glucose metabolism induced by SGLT1/2 inhibition could be accompanied by beneficial effects on NAFLD progression. METHODS: Glycemic homeostasis, hepatic glucose production and NAFLD features were investigated in obese T2D mice, treated with SGLT1/2 inhibitor phlorizin for 1 week. RESULTS: T2D increased glycemia; insulinemia; hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and glucose transporter 2 (Slc2a2 gene); hepatocyte nuclear factors 1A/4A/3B-binding activity in Slc2a2; endogenous glucose production; liver weight, plasma transaminase concentration as well as hepatic inflammation markers, and induced histological signals of non-alcoholic steatohepatitis (NASH, according to NASH-CRN Pathology Committee System). Phlorizin treatment restored all these parameters (mean NASH score reduced from 5.25 to 2.75 P<0.001); however, plasma transaminase concentration was partially reverted and some hepatic inflammation markers remained unaltered. CONCLUSION: NAFLD accompanies altered hepatic glucose metabolism in T2D mice and that greatly ameliorated through short-term treatment with the dual SGLT1/2 inhibitor. This suggests that altered hepatic glucose metabolism participates in T2D-related NAFLD and highlights the pharmacological inhibition of SGLTs as a useful approach not only for controlling glycemia but also for mitigating development and/or progression of NAFLD.
RESUMO
In the present study, molecular characterization of Fasciola flukes from Spain was performed to reveal the relation with the previously reported Peruvian F. hepatica population. The nuclear DNA markers, phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold), were used for species identification of Fasciola flukes. A total of 196 Fasciola flukes were identified as F. hepatica by pepck and pold, and 26 haplotypes were detected in mitochondrial NADH dehydrogenase subunit 1 (nad1). Only one of them was previously found in Spanish samples; which indicates the existence of high genetic diversity and population structure in F. hepatica from Spain. Three haplotypes were identical to those from Peruvian F. hepatica. The pairwise fixation index value confirmed a relatively close relationship between the Spanish and Peruvian F. hepatica samples. The Spanish samples showed clearly higher genetic variability than the Peruvian population. These results are discussed in relation with the hypothesis of the introduction of the parasite in America from Europe and recent evidence of pre-Hispanic F. hepatica from Argentina revealed by ancient DNA.
Assuntos
Doenças dos Bovinos/parasitologia , Fasciola hepatica/genética , Fasciolíase/veterinária , Variação Genética , Doenças dos Ovinos/parasitologia , Animais , Carboxiliases/análise , Bovinos , DNA Polimerase III/análise , Fasciolíase/parasitologia , Proteínas Fúngicas/análise , Peru , Filogenia , Análise de Sequência de DNA , Ovinos , EspanhaRESUMO
ß-hydroxy-ß-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.
Assuntos
Suplementos Nutricionais , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Músculo Esquelético , Valeratos/metabolismo , Animais , Glucose/química , Humanos , Fígado , Masculino , Camundongos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Valeratos/químicaRESUMO
Over-accumulation of triglycerides (TGs) in goose hepatocytes leads to the formation of fatty acid liver. Phosphoenolpyruvate carboxylase kinase 1 (PEPCK) is regarded as the rate-limiting enzyme for gluconeogenesis, and there is evidence that PEPCK is involved in regulating hepatic glucolipid metabolism. Hence, we proposed that PEPCK may have a role in goose hepatic steatosis. To test our hypothesis, the present study was conducted to firstly determine the sequence characteristics of goose PEPCK and then to explore its role in overfeeding-induced fatty liver. Our results showed that goose PEPCK encodes a 622-amino-acids protein that contains highly conserved oxaloacetate-binding domain, kinase-1 and kinase-2 motifs. PEPCK had higher mRNA levels in goose liver, and overfeeding markedly increased its expression in livers of both Sichuan White and Landes geese (p 0.05). Besides, expression of PEPCK was positively correlated with hepatic TG levels as well as plasma glucose and insulin concentrations. Additionally, in cultured goose primary hepatocyte, treatment with either oleic acid (0.8, 1.2 or 1.6 mM) or linoleic acid (0.125 or 0.25 mM) significantly (p 0.05) enhanced the expression of PEPCK. Taken together, these data suggested a role for PEPCK in the occurrence of overfeeding-induced goose hepatic steatosis.
Assuntos
Animais , Fosfoenolpiruvato Carboxilase/análise , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/química , Fígado Gorduroso , Gansos/fisiologia , Gansos/metabolismo , HiperfagiaRESUMO
Over-accumulation of triglycerides (TGs) in goose hepatocytes leads to the formation of fatty acid liver. Phosphoenolpyruvate carboxylase kinase 1 (PEPCK) is regarded as the rate-limiting enzyme for gluconeogenesis, and there is evidence that PEPCK is involved in regulating hepatic glucolipid metabolism. Hence, we proposed that PEPCK may have a role in goose hepatic steatosis. To test our hypothesis, the present study was conducted to firstly determine the sequence characteristics of goose PEPCK and then to explore its role in overfeeding-induced fatty liver. Our results showed that goose PEPCK encodes a 622-amino-acids protein that contains highly conserved oxaloacetate-binding domain, kinase-1 and kinase-2 motifs. PEPCK had higher mRNA levels in goose liver, and overfeeding markedly increased its expression in livers of both Sichuan White and Landes geese (p 0.05). Besides, expression of PEPCK was positively correlated with hepatic TG levels as well as plasma glucose and insulin concentrations. Additionally, in cultured goose primary hepatocyte, treatment with either oleic acid (0.8, 1.2 or 1.6 mM) or linoleic acid (0.125 or 0.25 mM) significantly (p 0.05) enhanced the expression of PEPCK. Taken together, these data suggested a role for PEPCK in the occurrence of overfeeding-induced goose hepatic steatosis.(AU)
Assuntos
Animais , Gansos/metabolismo , Gansos/fisiologia , Fosfoenolpiruvato Carboxilase/análise , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato Carboxilase/genética , Fígado Gorduroso , HiperfagiaRESUMO
BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. Among its subtypes, non-small cell lung cancer (NSCLC) is the most common. Recently, the mitochondrial isoform of the enzyme phosphoenolpyruvate carboxykinase (HsPEPCK-M) was identified as responsible for the metabolic adaptation in the NSCLC allowing tumor growth even under conditions of glucose deficiency. This adaptation is possible due to the role of HsPEPCK-M in gluconeogenesis, converting the oxaloacetate to phosphoenolpyruvate in the presence of GTP, which plays an important role in the energetic support of these tumors. In this context, it was shown that the inhibition or knockdown of this enzyme was able to induce apoptosis in NSCLC under low glucose conditions. PURPOSE: In this study, novel putative inhibitors were proposed for the human PEPCK-M (HsPEPCK-M) based on a computer-aided approach. METHODS: Comparative modeling was used to generate 3D models for HsPEPCK-M. Subsequently, the set of natural compounds of the ZINC database was screened against HsPEPCK-M models using structure-based pharmacophore modeling and molecular docking approaches. The selected compounds were evaluated according to its chemical diversity and clustered based on chemical similarity. RESULTS: The pharmacophore hypotheses, generated based on known PEPCK inhibitors, were able to select 7,124 candidate compounds. These compounds were submitted to molecular docking studies using three conformations of HsPEPCK-M generated by comparative modeling. The aim was to select compounds with high predicted binding affinity for at least one of the conformations of HsPEPCK-M. After molecular docking, 612 molecules were selected as potential inhibitors of HsPEPCK-M. These compounds were clustered according to their structural similarity. Chemical profiling and binding mode analyses of these compounds allowed the proposal of four promising compounds: ZINC01656421, ZINC895296, ZINC00895535 and ZINC02571340. CONCLUSION: These compounds may be considered as potential candidates for HsPEPCK-M inhibitors and may also be used as lead compounds for the development of novel HsPEPCK-M inhibitors.
RESUMO
RESUMEN Objetivo. El análisis de marcadores de selección permite obtener datos de la vida evolutiva de una raza o línea y permite también evaluar la conveniencia o no de su uso en programas de mejora genética. Hemos evaluado SNPs en cuatro genes (IGF2, MC4R, PRKAG3 y PEPCK-C), que tienen importantes efectos fenotípicos, en cerdos de la raza Pampa Rocha, una raza criolla, y hemos comparado sus frecuencias alélicas con cerdos de diversas razas autóctonas y líneas de España y Portugal no sometidas a selección así como con jabalíes y cerdos de la raza Piétrain. Materiales y métodos. Los SNPs fueron analizados mediante diversas técnicas de RT-PCR. Resultados. Los resultados de los análisis muestran una similitud de frecuencias alélicas entre los cerdos de la raza Pampa Rocha y los cerdos autóctonos de la península ibérica sobre todo en el gen IGF2 y, en menor medida en el gen PEPCK-C. Sin embargo difieren considerablemente en el caso del marcador MC4R y, también en menor medida, en PRKAG3. En el trabajo se discute el uso potencial de los resultados obtenidos para orientar la selección genética de cerdos de la raza Pampa Rocha. Conclusiones. Nuestros resultados demuestran la peculiaridad de la raza Pampa Rocha con respecto a los marcadores estudiados.
ABSTRACT Objective. The analysis of selection markers allows to obtain information about the evolutive story of a particular breed or line and allows also to evaluate the usefulness of those markers for breeding programs. We have analyzed SNPs in four genes of the creole pig breed Pampa Rocha and we have compared their allelic frequencies with the allelic frequencies of diverse autochthonous breeds of Spain and Portugal and also with Piétrain pigs and wild boars. Materials and methods. The SNPs were analyzed using diverse RT-PCR methods. Results. The results of the analysis show that Pampa Rocha pigs have similar allelic frequencies with the autochthonous breeds of Spain and Portugal especially in the case of IGF2 and also, but not so coincident, in the case of PEPCK-C. However, they differ considerably for MC4R, and also, but in a lower extent, for PRKAG3. We discuss in this work the usefulness of our results for breeding of Pampa Rocha pigs. Conclusions. Our results demonstrate the peculiarity of the Pampa Rocha breed regarding the markers studied.
Assuntos
Suínos , Sus scrofaRESUMO
Phytomodulatory proteins from the latex of the medicinal plant Calotropis procera has been shown to be implicated in many pharmacological properties. However there is no current information about their activity on glucose metabolism, although the latex is used in folk medicine for treating diabetes. In this study the phytomodulatory proteins (LP) from C. procera latex were assessed on glycemic homeostasis. Control animals received a single intravenous dose (5 mg/kg) of LP or saline solution (CTL). Four hours after treatment, the animals were euthanized and their livers were excised for analysis by western blot and RT-PCR AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase (PEPCK) and tumor necrosis factor alpha (TNF-α). In vivo tests of intraperitoneal tolerance to insulin, glucose and pyruvate were also performed, and the effect of LP administration on fed glycemia was studied followed by blood analysis to determine serum insulin levels. Treatment with LP reduced glycemia two hours after glucose administration (LP: 87.2 ± 3.70 mg/dL versus CTL: 115.6 ± 8.73 mg/dL). However, there was no change in insulin secretion (CTL: 14.16 ± 0.68 mUI/mL and LP: 14.96 ± 0.55 mUI/mL). LP improved the insulin sensitivity, represented by a superior glucose decay constant during an insulin tolerance test (kITT) (4.17 ± 0.94%/min) compared to the CTL group (0.82 ± 0.72%/min), and also improved glucose tolerance at 30 min (105.2 ± 12.4 mg/dL versus 154.2 ± 18.51 mg/dL), while it decreased hepatic glucose production at 15 and 30 min (LP: 75.5 ± 9.31 and 52.5 ± 12.05 mg/dL compared to the CTL: 79.0 ± 3.02 and 84.5 ± 7.49 mg/dL). Furthermore, there was a significant inhibition of gene expression of PEPCK (LP: 0.66 ± 0.06 UA and CTL: 1.14 ± 0.22 UA) and an increase of phosphorylated AMPK (LP: 1.342 ± 0.21 UA versus CTL: 0.402 ± 0.09 UA). These findings confirm the effect of LP on glycemic control and suggest LP may be useful in diabetes treatment. However, the pharmacological mechanism of LP in PEPCK modulation still needs more clarification.
Assuntos
Adenilato Quinase/metabolismo , Calotropis , Glucose/metabolismo , Látex/farmacologia , Fígado/metabolismo , Transdução de Sinais/fisiologia , Animais , Glucose/antagonistas & inibidores , Índice Glicêmico/efeitos dos fármacos , Índice Glicêmico/fisiologia , Látex/isolamento & purificação , Fígado/efeitos dos fármacos , Masculino , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacosRESUMO
Hypoxic zones in marine environments are spreading around the world affecting the survival of many organisms. Marine animals have several strategies to respond to hypoxia, including the regulation of gluconeogenesis. Phosphoenolpyruvate carboxykinase (PEPCK) is a key regulatory enzyme of gluconeogenesis. The objective of this work was to study two isoforms of PEPCK, one mitochondrial (PEPKC-M) and one cytosolic (PEPCK-C), from the white shrimp Litopenaeus vannamei and the response to hypoxia. Both PEPCK isoforms are 72â¯kDa proteins and have 92% identity at the amino acid level. The mitochondrial isoform has a N-terminal signal peptide for mitochondrial import. Gene expression and enzymatic activity in subcellular fractions were detected in gills, hepatopancreas and muscle in normoxic and hypoxic conditions. Expression of PEPCK-C was higher than PEPCK-M in all the tissues and induced in response to hypoxia at 48â¯h in hepatopancreas, while the enzymatic activity of PEPCK-M was higher than PEPCK-C in gills and hepatopancreas, but not in muscle and also increased in response to hypoxia in hepatopancreas but decreased in gills and muscle. During limiting oxygen conditions, shrimp tissues obtain energy by inducing anaerobic glycolysis, and although gluconeogenesis implies energy investment, due to the need to maintain glucose homeostasis, these gluconeogenic enzymes are active with contrasting behaviors in the cytosol and mitochondrial cell compartments and appear to be up-regulated in hepatopancreas indicating this tissue pivotal role in gluconeogenesis during the response to hypoxia.
Assuntos
Citosol/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia/enzimologia , Mitocôndrias/enzimologia , Penaeidae/fisiologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Sequência de Aminoácidos , Animais , Aquicultura , Sequência Conservada , Citosol/metabolismo , Bases de Dados de Proteínas , Brânquias/enzimologia , Brânquias/crescimento & desenvolvimento , Brânquias/metabolismo , Hepatopâncreas/enzimologia , Hepatopâncreas/crescimento & desenvolvimento , Hepatopâncreas/metabolismo , Hipóxia/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Penaeidae/crescimento & desenvolvimento , Fosfoenolpiruvato Carboxiquinase (GTP)/química , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Filogenia , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
To identify what makes insulin have an activating or inhibiting role in gluconeogenesis in goose hepatocytes and whether insulin regulates PEPCK and G6Pase through the PI3k/Akt/mTOR pathway or not, goose primary hepatocytes were isolated and cultured in vitro. After 12h cultured in serum-free medium, hepatocytes were incubated for 24 h in the medium with no addition (control) or with the addition of 50, 100, and 150 nM of insulin, 1000 nM NVP-BEZ235, or co-addition of 150nM insulin and 1000nM NVP-BEZ235. Glucose concentration and PEPCK and G6Pase expression were determined. The results showed that PEPCK and G6Pase mRNA levels and activities were up regulated in the 50, 100, and 150nM insulin treatments, while glucose concentration was not significantly altered (p > 0.05). Compared with the activation role of 150nM insulin alone, the co-treatment with1000nM NVP-BEZ235 and 150nM insulin significantly down regulated PEPCK mRNA level and G6Pase protein activity (p < 0.05). However, there is a different result on mRNA level of G6Pase. In conclusion, G6Pase and PEPCK are up regulated by insulin through PI3k/Akt/mTOR pathway in goose hepatocytes. However, G6Pase mRNA and protein levels may be regulated by insulin through different signaling pathways.(AU)
Assuntos
Animais , Gluconeogênese/fisiologia , Insulina/análise , Gansos/crescimento & desenvolvimento , Enzimas/análise , Sistema de Sinalização das MAP Quinases , Hepatócitos , Glucose-6-Fosfatase , Fosfoenolpiruvato Carboxiquinase (ATP) , Fosfatidilinositol 3-Quinases , Proteínas Quinases , Proteínas de Ligação a TacrolimoRESUMO
To identify what makes insulin have an activating or inhibiting role in gluconeogenesis in goose hepatocytes and whether insulin regulates PEPCK and G6Pase through the PI3k/Akt/mTOR pathway or not, goose primary hepatocytes were isolated and cultured in vitro. After 12h cultured in serum-free medium, hepatocytes were incubated for 24 h in the medium with no addition (control) or with the addition of 50, 100, and 150 nM of insulin, 1000 nM NVP-BEZ235, or co-addition of 150nM insulin and 1000nM NVP-BEZ235. Glucose concentration and PEPCK and G6Pase expression were determined. The results showed that PEPCK and G6Pase mRNA levels and activities were up regulated in the 50, 100, and 150nM insulin treatments, while glucose concentration was not significantly altered (p > 0.05). Compared with the activation role of 150nM insulin alone, the co-treatment with1000nM NVP-BEZ235 and 150nM insulin significantly down regulated PEPCK mRNA level and G6Pase protein activity (p < 0.05). However, there is a different result on mRNA level of G6Pase. In conclusion, G6Pase and PEPCK are up regulated by insulin through PI3k/Akt/mTOR pathway in goose hepatocytes. However, G6Pase mRNA and protein levels may be regulated by insulin through different signaling pathways.
Assuntos
Animais , Enzimas/análise , Gansos/crescimento & desenvolvimento , Gluconeogênese/fisiologia , Hepatócitos , Insulina/análise , Sistema de Sinalização das MAP Quinases , Fosfoenolpiruvato Carboxiquinase (ATP) , Proteínas Quinases , Proteínas de Ligação a TacrolimoRESUMO
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2 months old and 8 months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases.