RESUMO
Drought generates a complex scenario worldwide in which agriculture should urgently be reframed from an integrative point of view. It includes the search for new water resources and the use of tolerant crops and genotypes, improved irrigation systems, and other less explored alternatives that are very important, such as biotechnological tools that may increase the water use efficiency. Currently, a large body of evidence highlights the role of specific strains in the main microbial rhizosphere groups (arbuscular mycorrhizal fungi, yeasts, and bacteria) on increasing the drought tolerance of their host plants through diverse plant growth-promoting (PGP) characteristics. With this background, it is possible to suggest that the joint use of distinct PGP microbes could produce positive interactions or additive beneficial effects on their host plants if their co-inoculation does not generate antagonistic responses. To date, such effects have only been partially analyzed by using single omics tools, such as genomics, metabolomics, or proteomics. However, there is a gap of information in the use of multi-omics approaches to detect interactions between PGP and host plants. This approach must be the next scale-jump in the study of the interaction of soil-plant-microorganism. In this review, we analyzed the constraints posed by drought in the framework of an increasing global demand for plant production, integrating the important role played by the rhizosphere biota as a PGP agent. Using multi-omics approaches to understand in depth the processes that occur in plants in the presence of microorganisms can allow us to modulate their combined use and drive it to increase crop yields, improving production processes to attend the growing global demand for food.
RESUMO
Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments.
RESUMO
Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.