Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38705909

RESUMO

Our previous studies have shown the therapeutic efficacy of brucine dissolving-microneedles (Bru-DMNs) in treating rheumatoid arthritis (RA). Bru delivered via the DMNs can bypass some of the issues related to oral and systemic delivery, including extensive enzymatic activity, liver metabolism and in the case of systemic delivery via hypodermic needles, pain resulting from injections and needle stick injury. However, the underlying mechanism of Bru-DMNs against RA has not been investigated in depth at the pharmacokinetic-pharmacodynamic (PK-PD) level. In this study, a microdialysis-based method combined with ultra-performance liquid chromatography-tandem mass spectrometry was developed for the simultaneous and continuous sampling and quantitative analysis of blood and joint cavities in fully awake RA rats. The acquired data were analyzed by the PK-PD analysis method. Bru delivered via microneedles showed enhanced distribution and prolonged retention in the joint cavity compared to its administration in blood. The correlation between the effect of Bru and its concentration at the action site was indirect. In this study, we explored the mechanism of Bru-DMNs against RA and established a visualization method to express the PK-PD relationship of Bru-DMNs against RA. This study provides insights into the mechanism of action of drugs with potential side effects administered transdermally for RA treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38757461

RESUMO

Teverelix drug product (DP) is a parenteral gonadotropin-releasing hormone (GnRH) antagonist that has been successfully tested in phase 2 trials for hormone-sensitive advanced prostate cancer (APC) and benign prostatic hyperplasia (BPH). In previous APC trials, teverelix DP was administered as intramuscular (IM) and subcutaneous (SC) injections, using a loading dose and (in a single trial) a maintenance dose. Our objective was to derive an optimal dosing regimen for phase 3 clinical development, using a pharmacometrics modeling approach. Data from 9 phase 2 studies (229 patients) was utilized to develop a population pharmacokinetic (PK) model that described the concentration profile accommodating both IM and SC routes of administration. A 2-compartment model with sequential first-order absorption (slow and fast) and lag times best described the PK profiles of teverelix following SC and IM administration. An indirect response model with inhibition of production rate was fit to describe testosterone (T) concentrations based on physiological relevance. The final population PK-pharmacodynamic model was used to conduct simulations of various candidate dosing regimens to select the optimal dosing regimen to achieve clinical castration (T < 0.5 ng/mL by day 28) and to sustain clinical castration for 26 weeks. Model simulation showed that a loading dose of 360 mg SC and 180 mg IM with a maintenance dose of 360 mg SC 6-weekly (Q6W) starting at day 28 can achieve a ≥95% castration rate up to 52 weeks. This dose regimen was selected for phase 3 clinical development, which includes cardiovascular safety assessment in comparison to a GnRH agonist.

3.
Res Vet Sci ; 171: 105202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492279

RESUMO

First generation cephalosporins such cephalothin of cefazolin are indicated for antimicrobial prophylaxis for clean and clean contaminated surgical procedures because its antimicrobial spectrum, relative low toxicity and cost. Anesthesia and surgery could alter the pharmacokinetic behavior of different drugs administered perioperative by many mechanisms that affect distribution, metabolism or excretion processes. Intravenous administration of the antimicrobial within 30 and 60 min before incision is recommended in order to reach therapeutic serum and tissue concentrations and redosing is recommended if the duration of the procedure exceeds two half-life of the antimicrobial. To the author's knowledge there are no pharmacokinetic studies of cephalothin in dogs under anesthesia/surgery conditions. The aim of this study was (1) to evaluate the pharmacokinetics of cephalothin in anesthetized dogs undergoing ovariohysterectomy by a nonlinear mixed-effects model and to determine the effect of anesthesia/surgery and other individual covariates on its pharmacokinetic behavior; (2) to determine the MIC and conduct a pharmacodynamic modeling of time kill curves assay of cephalothin against isolates of Staphylococcus spp. isolated from the skin of dogs; (3) to conduct a PK/PD analysis by integration of the obtained nonlinear mixed-effects models in order to evaluate the antimicrobial effect of changing concentrations on simulated bacterial count; and (4) to determine the PK/PD endpoints and PK/PDco values in order to predict the optimal dose regimen of cephalothin for antimicrobial prophylaxis in dogs. Anesthesia/surgery significantly reduced cephalothin clearance by 18.78%. Based on the results of this study, a cephalothin dose regimen of 25 mg/kg q6h by intravenous administration showed to be effective against Staphylococcus spp. isolates with MIC values ≤2 µg/mL and could be recommended for antimicrobial prophylaxis for clean surgery in healthy dogs.


Assuntos
Doenças do Cão , Infecções Estafilocócicas , Cães , Animais , Cefalotina/farmacologia , Cefalotina/uso terapêutico , Antibacterianos , Staphylococcus aureus , Coagulase/farmacologia , Coagulase/uso terapêutico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/veterinária , Staphylococcus , Testes de Sensibilidade Microbiana/veterinária , Doenças do Cão/tratamento farmacológico , Doenças do Cão/prevenção & controle
4.
J Pharm Sci ; 113(5): 1368-1375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350557

RESUMO

There remains a substantial need for a comprehensive assessment of various natural language processing (NLP) algorithms in longitudinal pharmacokinetic/pharmacodynamic (PK/PD) modeling despite recent advances in machine learning in the space of quantitative pharmacology. We herein investigated the application of the transformer model and further compared the performance among several different NLP models, including long short-term memory (LSTM) and neural-ODE (Ordinary Differential Equation) in analyzing longitudinal PK/PD data using virtual data containing three different regimens. Results suggested that LSTM and neural-ODE, along with their respective variants provide a strong performance when predicting from training-included (seen) regimens, albeit with slight information loss for training-excluded (unseen) regimens. Similarly, as with neural-ODE, the transformer exhibited superior performance in describing time-series PK/PD data. Nonetheless, when extrapolating to unseen regimens, while outlining the general data trends, it encountered difficulties in precisely capturing data fluctuations. Remarkably, a small integration of unseen data into the training dataset significantly bolsters predictive performance for both seen and unseen regimens. Our study marks a pioneering effort in deploying the transformer model for time-series PK/PD analysis and provides a systematic exploration of the currently available NLP models in this field.


Assuntos
Modelos Biológicos , Processamento de Linguagem Natural , Algoritmos , Projetos de Pesquisa , Fatores de Tempo
5.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257247

RESUMO

Ginseng Radix et Rhizoma Rubra (Panax ginseng C.A. Mey, Hongshen, in Chinese) and Ophiopogonis Radix (Ophiopogon japonicus (L.f) Ker-Gawl., Maidong, in Chinese) are traditional Chinese herbal pairs, which were clinically employed to enhance the immune system of cancer patients. This study employed the pharmacokinetic and pharmacodynamic (PK-PD) spectrum-effect association model to investigate the antitumor active substances of P. ginseng and O. japonicus (PG-OJ). The metabolic processes of 20 major bioactive components were analyzed using Ultra-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (UPLC-MS/MS) in the lung tissue of tumor-bearing mice treated with PG-OJ. The ELISA method was employed to detect the levels of TGF-ß1, TNF-α, and IFN-γ in the lung tissue of mice at various time points, and to analyze their changes after drug administration. The results showed that all components presented a multiple peaks absorption pattern within 0.083 to 24 h post-drug administration. The tumor inhibition rate of tumor and repair rate of IFN-γ, TNF-α, and TGF-ß1 all increased, indicating a positive therapeutic effect of PG-OJ on A549 tumor-bearing mice. Finally, a PK-PD model based on the GBDT algorithm was developed for the first time to speculate that Methylophiopogonanone A, Methylophiopogonanone B, Ginsenoside Rb1, and Notoginsenoside R1 are the main active components in PG-OJ for lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Ophiopogon , Panax , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta1 , Cromatografia Líquida , Fator de Necrose Tumoral alfa , Espectrometria de Massas em Tandem , Neoplasias Pulmonares/tratamento farmacológico
6.
Antibiotics (Basel) ; 13(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38247631

RESUMO

Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a "robust" nonclinical package. The classical PK/PD index approach, proven successful for established classes of antibiotics, is at the core of recent antibiotic approvals and the current antibacterial PK/PD guidelines by regulators. Nevertheless, in the case of novel antibiotics with a novel Mechanism of Action (MoA), there is no prior experience with the PK/PD index approach as the basis for translating nonclinical efficacy to clinical outcome, and additional nonclinical studies and PK/PD analyses might be considered to increase confidence. In this review, we discuss the value and limitations of the classical PK/PD approach and present potential risk mitigation activities, including the introduction of a semi-mechanism-based PK/PD modeling approach. We propose a general nonclinical PK/PD package from which drug developers might choose the studies most relevant for each individual candidate in order to build up a "robust" nonclinical PK/PD understanding.

7.
J Pharm Sci ; 113(5): 1351-1358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38253224

RESUMO

Pharmacokinetic data for injectable azithromycin in children remain limited. This study aims to develop and validate a population pharmacokinetic model of azithromycin for injection in children under 6 years old and optimize its dosage regimen in this population. We prospectively enrolled patients under 6 years old who received azithromycin for injection at Beijing Friendship Hospital, Capital Medical University. Demographic information, clinical characteristics, and venous blood samples were collected in accordance with the research protocol. Azithromycin concentrations were determined using a validated UPLC-MS/MS method. The population pharmacokinetic model was structured using Phoenix NLME. The adequacy and robustness of the model was evaluated using VPC and bootstrap. We optimized azithromycin's dosing regimen for injection through Monte Carlo simulations. We included 254 plasma concentration data from 148 patients to establish the model. The clearance and volume were 1.27 L/h/kg and 45.6 L/kg, respectively. The covariates included were weight and age. VPC plots and nonparametric bootstrap showed that the final PPK model was reliable and robust. Based on Monte Carlo simulation, we derived a simple and practical dosing scheme. The results provided reference for individualized dosing in this population. The individualized dosing scheme based on Monte Carlo simulation can optimize clinical decision-making and guide personalized therapy.


Assuntos
Azitromicina , Espectrometria de Massas em Tandem , Criança , Humanos , Pré-Escolar , Azitromicina/farmacocinética , Cromatografia Líquida , Cálculos da Dosagem de Medicamento , Método de Monte Carlo , Antibacterianos
8.
J Pharm Sci ; 113(1): 191-201, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884193

RESUMO

Indirect response (IDR) and turnover with inactivation (TI) comprise two arrays of mechanism-based pharmacodynamic (PD) models widely used to describe delayed drug effects. IDR Model-IV (stimulation of response loss) and TI (irreversible loss) have been described with discerning "signature" profiles; classical IDR-IV response-time profiles display slow declines where peak response shifts later with increasing dose, whereas TI profiles feature steep response declines with earlier-shifting nadirs. Herein, we demonstrate mathematical convergence of IDR-IV and TI models upon implementation with identical linear versus nonlinear pharmacologic effect terms. Time of peak response in IDR-IV can in fact shift earlier or later depending on PK or PD parameters (e.g., kel, Smax) and effect type. A generalized dynamic model linking mRNA and protein turnover is proposed. Applicability of IDR-IV and TI, with either linear or nonlinear terms acting on degradation/catabolism/loss of response, is demonstrated through model-fitting PK-PD effects of three proteolysis-targeting chimeras (PROTACs) and two ligand-conjugated small interfering RNAs (siRNA). This work clarifies mathematical properties, convergence, and expected responses of IDR-IV and TI, demonstrates their applicability for targeted gene-silencing and protein-degrading agents, and illustrates how well-designed in vivo studies covering broad dose ranges with richly sampled time-points can influence PK-PD model structure and parameter resolution.


Assuntos
Modelos Biológicos , Proteólise
9.
J Pharm Sci ; 113(1): 246-256, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913904

RESUMO

Erythropoiesis-stimulating agents (ESAs) have been a common treatment for anemia associated with chronic kidney disease (CKD), while 10-20 % of patients continue to suffer from persistent anemia despite receiving ESA treatments. Our previous findings suggested that intensive ESA usage can cause resistance by depleting the erythroid precursor cells. Here, we used a mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model of ESAs and conducted simulations to evaluate the influence of dose regimens and other factors (such as administration route, individual PK/PD parameters, types of ESAs, and disease status) on ESA resistance with instantaneous dose adaptations in healthy populations and anemic patients. The simulated results show that instantaneous dose-adaptation can reduce ESA resistance, but up to 30 % of subjects still ended up developing ESA resistance in healthy populations. The Smax is markedly higher in hypo-responders than in normal-responders, while hypo-responders possess fewer precursors and experience a faster decline compared to normal-responders. There is a ceiling effect of increasing ESA dosage to improve HGB responses and reduce ESA resistance, and the limit is lower in anemic patients compared to healthy populations. Subcutaneous administrations and ESAs with longer half-lives lead to stronger HGB responses and less resistance at equivalent doses. Taken together, this study indicates that precursor depletion contributes to ESA resistance and dose regimens can greatly influence the occurrence of ESA resistance. Furthermore, ESA treatment for patients showing ESA resistance should avoid continuously increasing doses and instead consider stimulating the renewal of precursors.


Assuntos
Anemia , Hematínicos , Insuficiência Renal Crônica , Humanos , Hematínicos/farmacologia , Hematínicos/uso terapêutico , Eritropoese , Hemoglobinas/uso terapêutico , Anemia/tratamento farmacológico , Anemia/complicações , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
10.
J Pharm Sci ; 113(1): 176-190, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871778

RESUMO

Triantennary N-acetyl-D galactosamine (GalNAc)3-conjugated small interfering RNA (siRNA) have majorly advanced the development of RNA-based therapeutics. Chemically stabilized GalNAc-siRNAs exhibit extensive albeit capacity-limited (nonlinear) distribution into hepatocytes with additional complexities in intracellular liver disposition and pharmacology. A mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model of GalNAc-siRNA was developed to i) quantitate ASGPR-mediated disposition and downstream RNA-induced silencing complex (RISC)-dependent pharmacology following intravenous (IV) and subcutaneous (SC) dosing, ii) assess the kinetics of formed active metabolite, iii) leverage, as an example, published experimental data for givosiran, and iv) demonstrate PK translation across two preclinical species (rat and monkey) with subsequent prediction of human plasma PK. The structural model is based on competition between parent and formed active metabolite for occupancy and uptake via ASGPR into hepatocytes, intracellular sequestration and degradation, and downstream engagement of RNA-induced silencing complex (RISC) governing target mRNA degradation. The model jointly and accurately captured available concentration-time profiles of givosiran and/or AS(N-1)3' givosiran in rat and/or monkey plasma, liver, and/or kidney following givosiran administered both IV and SC. RISC-dependent gene silencing of ALAS1 mRNA was well-characterized. The model estimated an in vivo affinity (KD) value of 27.7 nM for GalNAc-ASGPR and weight-based allometric exponents of -0.27 and -0.24 for SC absorption and intracellular (endolysosomal) degradation rate constants. The model well-predicted reported givosiran plasma PK profiles in humans. PK simulations revealed net-shifts in liver-to-kidney distribution ratios with increasing IV and SC dose. Importantly, decreases in the relative liver uptake efficiency were demonstrated following IV and, to a lesser extent, following SC dosing explained by differential ASGPR occupancy profiles over time.


Assuntos
Galactosamina , Complexo de Inativação Induzido por RNA , Humanos , Ratos , Animais , RNA Interferente Pequeno/genética , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Inativação Gênica , Haplorrinos/genética , Haplorrinos/metabolismo
11.
J Pharm Sci ; 113(1): 22-32, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924975

RESUMO

Historically, vaccine development and dose optimization have followed mostly empirical approaches without clinical pharmacology and model-informed approaches playing a major role, in contrast to conventional drug development. This is attributed to the complex cascade of immunobiological mechanisms associated with vaccines and a lack of quantitative frameworks for extracting dose-exposure-efficacy-toxicity relationships. However, the Covid-19 pandemic highlighted the lack of sufficient immunogenicity due to suboptimal vaccine dosing regimens and the need for well-designed, model-informed clinical trials which enhance the probability of selection of optimal vaccine dosing regimens. In this perspective, we attempt to develop a quantitative clinical pharmacology-based approach that integrates vaccine dose-efficacy-toxicity across various stages of vaccine development into a unified framework that we term as model-informed vaccine dose-optimization and development (MIVD). We highlight scenarios where the adoption of MIVD approaches may have a strategic advantage compared to conventional practices for vaccines.


Assuntos
Farmacologia Clínica , Vacinas , Humanos , Pandemias , Desenvolvimento de Medicamentos , Desenvolvimento de Vacinas , Modelos Biológicos , Relação Dose-Resposta a Droga
12.
J Pharm Sci ; 113(1): 257-267, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926235

RESUMO

OBJECTIVES: Cell trafficking encompasses movement of the immune system cells (e.g., granulocytes, lymphocytes) between the blood and the extravascular tissues (e.g., lymph nodes). Corticosteroids are known to suppress cell trafficking. The age-structured cell population models introduce the transit time as a structure that allows one to quantify the distribution of times the immune cells spend in the blood and the extravascular tissues. The objective of this work is to develop an age-structured cell population model describing drug effects on cell trafficking and to implement the model in pharmacometric software to enable parameter estimation and simulations. METHODS: We adopted the well-known McKendrick age-structured population model to describe the age distributions in two cell populations: blood cells and cells in the extravascular space. The hazard of cell recirculation from the extravascular tissues was age dependent and described by the Weibull function with the shape ν and scale ß parameters. The drug effect on cell trafficking was modeled as the product of the Emax function of the drug plasma concentration and the Weibull hazard. The model was implemented in NONMEM 7.5.1. The model was applied to the basophil data in 34 healthy subjects who received a single intramuscular or oral dose of 6 mg dexamethasone (DEX). A recently published pharmacokinetic model was applied to describe DEX plasma concentration. Typical values of parameter estimates were further used to simulate the DEX effect of the basophil mean transit time in the extravascular tissues. RESULTS: Simulations of basophil time courses for varying ν demonstrated that the rebound in the blood count data following drug administration is only possible for ν >1. The estimates of model parameters were ν = 3.02, ß = 0.00863 1/h, and IC50 = 7.47 ng/mL. The calculated baseline mean transit times of basophils in the blood 7.2 h and extravascular tissues 104.9 h agree with the values reported in the literature. CONCLUSIONS: We introduced an age-structured population model to describe cell trafficking between the blood and extravascular tissues. The model was adopted to account for the inhibitory drug effect on the cell recirculation. We showed that the age structure is essential to explain the rebound observed in the blood count response to a single dose drug administration. The model was validated using the basophil responses to DEX treatment in healthy subjects.


Assuntos
Modelos Biológicos , Software , Humanos , Linfócitos , Relação Dose-Resposta a Droga
13.
Pharmaceutics ; 15(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37765243

RESUMO

Despite the recent advances in this field, there are limited methods for translating organoid-based study results to clinical response. The goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to facilitate the translation, using oxaliplatin and irinotecan treatments with colorectal cancer (CRC) as examples. The PK models were developed using qualified oxaliplatin and irinotecan PK data from the literature. The PD models were developed based on antitumor efficacy data of SN-38 and oxaliplatin evaluated in vitro using tumor organoids. To predict the clinical response, translational scaling of the models was established by incorporating predicted ultrafiltration platinum in plasma or SN-38 in tumors to PD models as the driver of efficacy. The final PK/PD model can predict PK profiles and responses following treatments with oxaliplatin or irinotecan. After generation of virtual patient cohorts, this model simulated their tumor shrinkages following treatments, which were used in analyzing the efficacies of the two treatments. Consistent with the published clinical trials, the model simulation suggested similar patient responses following the treatments of oxaliplatin and irinotecan with regards to the probabilities of progression-free survival (HR = 1.05, 95%CI [0.97;1.15]) and the objective response rate (OR = 1.15, 95%CI [1.00;1.32]). This proposed translational PK/PD modeling approach provides a significant tool for predicting clinical responses of different agents, which may help decision-making in drug development and guide clinical trial design.

14.
Clin Pharmacol Drug Dev ; 12(6): 611-624, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37125450

RESUMO

JNJ-64264681 is an irreversible covalent inhibitor of Bruton's tyrosine kinase. This phase 1, first-in-human, 2-part (single-ascending dose [SAD]; multiple-ascending dose [MAD]) study evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD; Bruton's tyrosine kinase occupancy [BTKO]) of JNJ-64264681 oral solution in healthy participants. For SAD (N = 78), 6 increasing doses of JNJ-64264681 (4-400 mg) or placebo were evaluated in fasted males. The effects of sex, food, and a capsule formulation were evaluated in separate cohorts. For MAD (N = 27), sequential cohorts of male and female participants received 36/100/200 mg JNJ-64264681 once daily for 10 days. JNJ-64264681 exposure (peak concentration; area under the concentration-time curve) was less than dose proportional from 4 mg to 36 mg. Dose-normalized area under the concentration-time curves following the 36 mg and 100 mg doses were generally similar. The mean terminal half-life was 1.6-13.2 hours. With multiple doses, steady state was achieved by day 2. A semimechanistic PK/PD model was developed using the first 5 SAD cohorts' data to predict %BTKO in MAD cohorts. PK/PD model guided dose-escalation, and all participants in the 200/400 mg single-dose cohorts achieved ≥90% BTKO at 4 hours after dosing (peak) with prolonged occupancy. As BTKO data became available from MAD cohorts, it was found that observed BTKO data were consistent with model predictions. JNJ-64264681 showed no safety signals of concern. Overall, safety, tolerability, PK, BTKO, and PK/PD modeling guided the rationale for dose selection for the subsequent first-in-patient lymphoma studies.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Feminino , Humanos , Masculino , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Meia-Vida , /farmacologia
15.
MAbs ; 15(1): 2181016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823042

RESUMO

Innovative approaches in the design of T cell-engaging (TCE) molecules are ushering in a new wave of promising immunotherapies for the treatment of cancer. Their mechanism of action, which generates an in trans interaction to create a synthetic immune synapse, leads to complex and interconnected relationships between the exposure, efficacy, and toxicity of these drugs. Challenges thus arise when designing optimal clinical dose regimens for TCEs with narrow therapeutic windows, with a variety of dosing strategies being evaluated to mitigate key side effects such as cytokine release syndrome, neurotoxicity, and on-target off-tumor toxicities. This review evaluates the current approaches to dose optimization throughout the preclinical and clinical development of TCEs, along with perspectives for improvement of these strategies. Quantitative approaches used to aid the understanding of dose-exposure-response relationships are highlighted, along with opportunities to guide the rational design of next-generation TCE molecules, and optimize their dose regimens in patients.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Neoplasias/tratamento farmacológico , Imunoterapia
16.
Expert Opin Drug Metab Toxicol ; 19(1): 13-25, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786064

RESUMO

INTRODUCTION: Determining antibiotic exposure in the lung and the threshold(s) needed for effective antibacterial killing is paramount during development of new antibiotics for the treatment of nosocomial pneumonia, as these exposures directly affect clinical outcomes and resistance development. The use of pharmacokinetic and pharmacodynamic modeling is recommended by regulatory agencies to evaluate antibiotic pulmonary exposure and optimize dosage regimen selection. This process has been implemented in newer antibiotic development. AREAS COVERED: This review will discuss the basis for conducting pharmacokinetic and pharmacodynamic studies to support dosage regimen selection and optimization for the treatment of nosocomial pneumonia. Pharmacokinetic/pharmacodynamic data that supported recent hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia indications for ceftolozane/tazobactam, ceftazidime/avibactam, imipenem/cilastatin/relebactam, and cefiderocol will be reviewed. EXPERT OPINION: Optimal drug development requires the integration of preclinical pharmacodynamic studies, healthy volunteers and ideally patient bronchoalveolar lavage pharmacokinetic studies, Monte-Carlo simulation, and clinical trials. Currently, plasma exposure has been successfully used as a surrogate for lung exposure threshold. Future studies are needed to identify the value of lung pharmacodynamic thresholds in nosocomial pneumonia antibiotic dosage optimization.


Assuntos
Infecção Hospitalar , Pneumonia Associada a Assistência à Saúde , Pneumonia Bacteriana , Humanos , Antibacterianos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Pneumonia Associada a Assistência à Saúde/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Testes de Sensibilidade Microbiana
17.
J Pers Med ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422079

RESUMO

The correction of blood coagulation impairments of a bleeding or thrombotic nature employs standard protocols where the type of drug, its dose and the administration regime are stated. However, for a group of patients, such an approach may be ineffective, and personalized therapy adjustment is needed. Laboratory hemostasis tests are used to control the efficacy of therapy, which is expensive and time-consuming. Computer simulations may become an inexpensive and fast alternative to real blood tests. In this work, we propose a procedure to numerically define the individual hemostasis profile of a patient and estimate the anticoagulant efficacy of low-molecular-weight heparin (LMWH) based on the computer simulation of global hemostasis assays. We enrolled a group of 12 patients receiving LMWH therapy and performed routine coagulation assays (activated partial thromboplastin time and prothrombin time) and global hemostasis assays (thrombodynamics and thrombodynamics-4d) and measured anti-Xa activity, fibrinogen, prothrombin and antithrombin levels, creatinine clearance, lipid profiles and clinical blood counts. Blood samples were acquired 3, 6 and 12 h after LMWH administration. We developed a personalized pharmacokinetic model of LMWH and coupled it with the mechanism-driven blood coagulation model, which described the spatial dynamics of fibrin and thrombin propagation. We found that LMWH clearance was significantly lower in the group with high total cholesterol levels. We generated an individual patient's hemostasis profile based on the results of routine coagulation assays. We propose a method to simulate the results of global hemostasis assays in the case of an individual response to LMWH therapy, which can potentially help with hemostasis corrections based on the output of global tests.

18.
Rev. bras. ciênc. vet ; 29(4): 164-168, out./dez. 2022. il.
Artigo em Português | LILACS, VETINDEX | ID: biblio-1427041

RESUMO

Objetivou-se comparar o efeito in silico do florfenicol nas doses de 20 e 30 mg/Kg em ovinos pelas vias intravenosa (IV) e intramuscular (IM), usando a modelagem PK/PD. Realizou-se uma simulação de Monte Carlo com base nos dados de concentração plasmática de um estudo publicado anteriormente. Calculou-se a área sob a curva (ASC) e as taxas de eficácia do florfenicol para os efeitos bacteriostático, bactericida e de erradicação bacteriológica. A dose de 20 mg/Kg IV demonstrou efeitos de erradicação de 100, 93 e 0% para CIM de 0,5, 1 e acima, respectivamente. O efeito bacteriostático foi de 99 e 90% para CIM de 4 e 2 µg/ml, enquanto o bactericida foi de 14% para CIM de 2 µg/ml. A dose de 30 mg/Kg IV apresentou 100% de erradicação para CIM de 1 µg/mL e 100% de efeito bactericida para CIM de 2 µg/mL. Há 100% de efeito bacteriostático em CIM de 4 µg/ml. As doses de 20 e 30 mg/Kg IM mostraram 100% de erradicação para CIM até 1 µg/mL e 0% para CIM maiores. O efeito bacteriostático foi mantido em 100% para uma CIM de 4 µg/mL em ambas as doses. Este estudo mostra o efeito de erradicação bacteriológica do florfenicol nas doses de 20 e 30 mg/Kg, IV e IM. Recomenda-se que seja feito um estudo de eficácia in vivo com a dose de 30mg/Kg IM em ovinos infectados por F. necrophorum com MIC superior a 2 µg/mL.


We aimed to compare the in silico effect of florfenicol at doses of 20 and 30 mg/Kg in sheep by intravenous (IV) and intramuscular (IM) routes, using PK/PD modeling. We performed a Monte Carlo simulation based on plasma concentration data from a previously published study. We calculated the area under the curve (AUC) and the efficacy rates of florfenicol to bacteriostatic, bactericidal, and bacteriological eradication effects. The dose of 20 mg/Kg IV demonstrated 100, 93, and 0% eradication effects for MICs of 0.5, 1, and above, respectively. The bacteriostatic effect was 99 and 90% for MIC of 4 and 2 µg/ml, while the bactericide was 14% for MIC of 2 µg/ml. The 30 mg/Kg IV dose showed 100% eradication for MIC of 1 µg/mL and 100% bactericidal effect for MIC of 2 µg/mL. There is a 100% of bacteriostatic effect at MIC of 4 µg/ml. Doses of 20 and 30 mg/Kg IM showed 100% eradication for MIC up to 1 µg/mL and 0% for MIC above. The bacteriostatic effect was maintained at 100% for a MIC of 4 µg/mL at both doses. This study shows the bacteriological eradication effect of florfenicol at doses of 20 and 30 mg/Kg, IV, and IM. Therefore, we recommend an in vivo efficacy study with a dose of 30mg/Kg IM in sheep infected with F. necrophorum with MIC greater than two µg/mL.


Assuntos
Animais , Ovinos/anormalidades , Técnicas Bacteriológicas/veterinária , Pododermatite Necrótica dos Ovinos/tratamento farmacológico , Fusobacterium necrophorum/patogenicidade , Antibacterianos/uso terapêutico , Método de Monte Carlo
19.
Antimicrob Agents Chemother ; 66(9): e0079322, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040146

RESUMO

Heteroresistance corresponds to the presence, in a bacterial isolate, of an initial small subpopulation of bacteria characterized by a significant reduction in their sensitivity to a given antibiotic. Mechanisms of heteroresistance versus resistance are poorly understood. The aim of this study was to explore heteroresistance in mcr-positive and mcr-negative Escherichia coli strains exposed to colistin by use of modeling killing curves with a semimechanistic model. We quantify, for a range of phenotypically (susceptibility based on MIC) and genotypically (carriage of mcr-1 or mcr-3 or mcr-negative) different bacteria, a maximum killing rate (Emax) of colistin and the corresponding potency (EC50), i.e., the colistin concentrations corresponding to Emax/2. Heteroresistant subpopulations were identified in both mcr-negative and mcr-positive E. coli as around 0.06% of the starting population. Minority heteroresistant bacteria, both for mcr-negative and mcr-positive strains, differed from the corresponding dominant populations only by the maximum killing rate of colistin (differences for Emax by a factor of 12.66 and 3.76 for mcr-negative and mcr-positive strains, respectively) and without alteration of their EC50s. On the other hand, the resistant mcr-positive strains are distinguished from the mcr-negative strains by differences in their EC50, which can reach a factor of 44 for their dominant population and 22 for their heteroresistant subpopulations. It is suggested that the underlying physiological mechanisms differ between resistance and heteroresistance, with resistance being linked to a decrease in the affinity of colistin for its site of action, whereas heteroresistance would, rather, be linked to an alteration of the target, which will be more difficult to be further changed or destroyed.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos
20.
Antibiotics (Basel) ; 11(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892376

RESUMO

Pharmacokinetics and pharmacodynamics are areas in pharmacology related to different themes in the pharmaceutical sciences, including therapeutic drug monitoring and different stages of drug development. Although the knowledge of these disciplines is essential, they have historically been treated separately. While pharmacokinetics was limited to describing the time course of plasma concentrations after administering a drug-dose, pharmacodynamics describes the intensity of the response to these concentrations. In the last decades, the concept of pharmacokinetic/pharmacodynamic modeling (PK/PD) emerged, which seeks to establish mathematical models to describe the complete time course of the dose-response relationship. The integration of these two fields has had applications in optimizing dose regimens in treating antibacterial and antifungals. The anti-infective PK/PD models predict the relationship between different dosing regimens and their pharmacological activity. The reviewed studies show that PK/PD modeling is an essential and efficient tool for a better understanding of the pharmacological activity of antibacterial and antifungal agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...