Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(7): 4164-4176, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022963

RESUMO

Studying the response relationship and spatial distribution characteristics of carbon reserve and land use change and predicting the change trend of carbon reserve caused by the change of land use type in the future can provide some reference for watershed policy formulation, land use structure adjustment, and the realization of the "two-carbon" goal. Based on the land use data from 2000, 2010, and 2020, the InVEST model was used to calculate carbon reserves and analyze the change characteristics and to simulate the land use change and its impact on carbon reserves in natural development, urban development, and ecological protection in 2030 with the help of the PLUS model. The study found that ① the main land types in the Shiyang River Basin from 2000 to 2020 were cultivated land, grassland, and unused land. The area of cultivated land, water area, and construction land in the Shiyang River Basin showed a significant increasing trend, and the construction land area increased the most. ② In the natural development scenario of 2030, cultivated land, water area, and construction all increased by 6.15%, 9.56%, and 29.9%, respectively. In the urban development scenario, the area of construction land increased the most. Compared with that in the other two scenarios, the area of forest land and grassland increased in the ecological protection scenarios. ③ The carbon reserves of the Shiyang River Basin from 2000 to 2020 showed a steady increase, with an overall increase of 0.035×108 t. The increased carbon reserves were mainly due to the increase in cultivated land area. ④ In 2030, the carbon reserves of the Shiyang River Basin showed an increasing trend in all three scenarios. The carbon reserves in the three scenarios were 5.65×108, 5.64×108,and 5.73×108 t, respectively, with the largest increase in carbon reserves in the ecological conservation scenario, mainly due to the increase in grassland and woodland. The results showed that the expansion of construction land was the main cause of the loss of carbon reserves. If effective ecological protection measures are taken, the carbon reserves in the Shiyang River Basin will be improved, and the problem of the loss of carbon reserves caused by economic development can be solved.

2.
Sci Total Environ ; 945: 174005, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889815

RESUMO

Predicting future land use changes and assessing carbon storage remain challenging. Nowadays, how nature and socioeconomics drive changes in carbon storage is a hot topic in research. In this study, through the projection of land use type and the integration of the PLUS, Integrated Valuation of Ecosystem Services and Trade-offs (InVEST), and Geodetector models, we constructed a framework for assessing carbon storage in different land use scenarios. Utilizing this framework, it is possible to project land use change and estimate carbon storage based on different development scenarios. We applied the framework to the Yili Tianshan region and identified the main driving forces for carbon storage change. Further, we estimated the carbon storage in the Yili Tianshan region in 2035 under four scenarios (RE, NE, EP, and CLP). The results showed the following: 1) Between 1990 and 2020, there was an increase in the forest area and water bodies in the Yili-Tianshan region, mainly from bare land. 2) As shown on the time scale, carbon storage increases in the Yili-Tianshan region with a W-shaped fluctuation by converting grasslands and bare land into forests. On a spatial scale, the carbon storage was lower in the center and higher on both sides in the Yili-Tianshan region. 3) In 2035- RE, 2035-ND, and 2035-EP scenarios, the carbon storage was increased by 4.30 Tg, 6.67 Tg, and 12.08 Tg; in the 2035-CLP scenario, it was decreased by 14.63 Tg. The Yili-Tianshan region experienced a notable rise in carbon storage under the 2035-EP scenario compared to the other three scenarios. 4) Soil type played a significant role in the spatial differentiation of carbon storage in Yili-Tianshan (q value 0.5958), followed by population density (0.5394). The changes in carbon storage in the Yili-Tianshan region are the result of synergistic effects of multiple factors, in which the soil type∩soil erosion intensity are the most important. This research could provide a reference method for improving regional carbon storage.

3.
Huan Jing Ke Xue ; 44(8): 4655-4665, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694658

RESUMO

Land use/cover change (LUCC) is the main factor leading to the change in carbon stock of terrestrial ecosystems. Studying the process of land use and carbon storage change under different scenarios in the future will help to formulate scientific land use policies and increase regional terrestrial ecosystem carbon storage. The GMMOP-PLUS-InVEST model was constructed to analyze the change characteristics of land use and carbon storage in northwest China from 2000 to 2020 through multi-source data and to predict the land use and carbon storage in northwest China in 2030 under the scenarios of natural development (ND), economic development (ED), ecological protection (EP), and comprehensive development (CD). The results showed that:①from 2000 to 2020, the area of grassland decreased by 1680.99×104 hm2, and the area of cultivated land, forest land, water area, wetland, construction land, and unused land increased by 201.19×104, 208.47×104, 91.54×104, 51.30×104, 157.40×104, and 971.09×104 hm2, respectively. ②From 2000 to 2020, soil and underground carbon storage decreased, dead organic matter and aboveground carbon storage increased, and total carbon storage decreased by 677.97×106 t. Grassland degradation was the main reason for the decrease in carbon storage. ③Compared to that in 2020, the total carbon storage in the ND scenario was reduced by 63.12×106 t, and the total carbon storage in the ED, EP, and CD scenarios increased by 759.19×106, 804.57×106, and 817.89×106 t, respectively; the CD scenario was the optimal development model. These results can provide a reference for regional land use planning and the increase of terrestrial ecosystem carbon storage.

4.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3373-3384, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511377

RESUMO

Under the background of the carbon peaking and carbon neutrality goals, the evolution of the spatiotemporal pattern of carbon storage has recently emerged as a research hotspot. The change in land use and land cover (LULC) is the primary driver of carbon storage changes. Understanding the spatiotemporal variations of LULC and carbon storage at the small scale of district and county level and proposing strategies to improve carbon sink, will contribute to the ecological conservation, restoration and sustainable development of districts or counties. With Yanqing District in Beijing as an example, we calculated carbon storage from 1990 to 2020 based on the InVEST model and used the PLUS model to predict LULC type changes under three scenarios (natural growth, ecological conservation and economic development) from 2020 to 2050. We further predicted the carbon storage and proposed mea-sures to improve carbon sink. The results showed that the key LULC change in Yanqing between 1990 and 2020 were the conversion of 88.9% of grassland to forest, 50.1% of farmland to forest, and 39.5% of cropland to impervious surface. The total carbon storage showed an upward trend, with an increase of 3.34×106 Mg. The spatial distribution of carbon storage presented "high in the northeast, low in the southwest, and high in the mountainous areas, low in the riverine areas." The increase in forest and the decrease in grassland were the main reasons for the increase and decrease in carbon storage, respectively. Between 2020 and 2050, the ecological restoration efforts under the ecological protection scenario increased, and the probability of other LULCs transforming into forest increased, resulting in a 5.8% increase in carbon storage, which had the highest increase and carbon storage under the three scenarios. High-value carbon storage areas were concentrated in the northeast, northwest, and south of Yanqing District, basically corresponding to the mountainous regions of Yanqing with high forest coverage, and the low-value areas generally corresponded to the plains with high development intensity and low forest coverage. We could implement comprehensive ecological protection and restoration measures, including forest and grassland ecosystem protection, water environment ecological restoration, farmland ecological restoration, to promote sustainable development in Yanqing District and to achieve the "dual carbon" goal.


Assuntos
Sequestro de Carbono , Ecossistema , Pequim , Carbono , Desenvolvimento Econômico , Florestas , Conservação dos Recursos Naturais , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA