Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 741
Filtrar
1.
J Environ Sci (China) ; 149: 342-357, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181647

RESUMO

The toxicity of PM2.5 does not necessarily change synchronously with its mass concentration. In this study, the chemical composition (carbonaceous species, water-soluble ions, and metals) and oxidative potential (dithiothreitol assay, DTT) of PM2.5 were investigated in 2017/2018 and 2022 in Xiamen, China. The decrease rate of volume-normalized DTT (DTTv) (38%) was lower than that of PM2.5 (55%) between the two sampling periods. However, the mass-normalized DTT (DTTm) increased by 44%. Clear seasonal patterns with higher levels in winter were found for PM2.5, most chemical constituents and DTTv but not for DTTm. The large decrease in DTT activity (84%-92%) after the addition of EDTA suggested that water-soluble metals were the main contributors to DTT in Xiamen. The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022 were observed. The decrease rates of the hazard index (32.5%) and lifetime cancer risk (9.1%) differed from those of PM2.5 and DTTv due to their different main contributors. The PMF-MLR model showed that the contributions (nmol/(min·m3)) of vehicle emission, coal + biomass burning, ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%, 65.2%, 66.5%, and 22.2%, respectively, compared to those in 2017/2018, which was consistent with the emission reduction of vehicle exhaust and coal consumption, the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC. However, the contributions of dust + sea salt and industrial emission increased.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , China , Poluentes Atmosféricos/análise , Oxirredução , Cidades , Poluição do Ar/estatística & dados numéricos
2.
J Environ Sci (China) ; 149: 406-418, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181653

RESUMO

Improving the accuracy of anthropogenic volatile organic compounds (VOCs) emission inventory is crucial for reducing atmospheric pollution and formulating control policy of air pollution. In this study, an anthropogenic speciated VOCs emission inventory was established for Central China represented by Henan Province at a 3 km × 3 km spatial resolution based on the emission factor method. The 2019 VOCs emission in Henan Province was 1003.5 Gg, while industrial process source (33.7%) was the highest emission source, Zhengzhou (17.9%) was the city with highest emission and April and August were the months with the more emissions. High VOCs emission regions were concentrated in downtown areas and industrial parks. Alkanes and aromatic hydrocarbons were the main VOCs contribution groups. The species composition, source contribution and spatial distribution were verified and evaluated through tracer ratio method (TR), Positive Matrix Factorization Model (PMF) and remote sensing inversion (RSI). Results show that both the emission results by emission inventory (EI) (15.7 Gg) and by TR method (13.6 Gg) and source contribution by EI and PMF are familiar. The spatial distribution of HCHO primary emission based on RSI is basically consistent with that of HCHO emission based on EI with a R-value of 0.73. The verification results show that the VOCs emission inventory and speciated emission inventory established in this study are relatively reliable.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise
3.
Heliyon ; 10(18): e38190, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39381221

RESUMO

Apportioning pollution sources under compound pollution conditions is challenging in river pollution source analysis. The positive matrix factorization (PMF) model is widely used to analyze river pollution sources. However, the identification of pollutants in this model relies primarily on the subjective experience of the researchers, leading to ineffective identification of different contaminants from similar sources. In this study, we propose a comprehensive deviation index (CDI) to quantitatively identify pollution source types based on the PMF and observed source profiles. Taking the subtropical Xizhijiang River Basin as a case study, we quantitatively identified the pollution sources and their contributions to dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) using observed water quality and pollution sources data. The results showed that the eight major pollutants in the study region exhibited significant positive correlations, indicating the similarity of pollutant sources in the watershed. The PMF model identified three primary pollution sources with coefficients of determination for observed versus predicted concentrations ranging from 0.60 to 0.98. The CDI unveiled that the watershed's three pollution sources were farmland, rural, and wastewater treatment plants (WTPs). Farmland emerges as the predominant contributor to DOC (68.04 %), TC (63.29 %), and TDP (44.51 %). Rural notably contributes to NH3-N, PO4 3-, TDP, and TN, with percentages of 86.37 %, 57.65 %, 41.40 %, and 30.45 %, respectively. WTPs significantly contribute to NO2 -, NO3 -, and TN, accounting for 71.81 %, 57.39 %, and 37.26 %, respectively. Incorporating source fingerprints into the PMF model, the CDI can accurately identify pollution sources, improve the interpretability of source identification, and mitigate uncertainty in the multiple-source unknown receptor model. These findings have immediate and practical implications for river ecosystem management and pollution control, providing a more effective method for identifying and addressing pollution sources.

4.
J Environ Manage ; 369: 122322, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217898

RESUMO

Identifying the primary source of heavy metals (HMs) pollution and the key pollutants is crucial for safeguarding eco-health and managing risks in industrial vicinity. For this purpose, this investigation was carried out to investigate the pollution area identification with soil static environmental capacity (QI), receptor model-oriented critical sources, and Monte Carlo simulation (MCS) based probabilistic environmental and human health hazards associated with HMs in agricultural soils of Narayanganj, Bangladesh. The average concentration of Cr, Ni, Cu, Cd, Pb, Co, Zn, and Mn were 98.67, 63.41, 37.39, 1.28, 23.93, 14.48, 125.08, and 467.45 mg/kg, respectively. The geoaccumulation index identified Cd as the dominant metal, indicating heavy to extreme contamination in soils. The QI revealed that over 99% of the areas were polluted for Ni and Cd with less uncertain regions whereas Cr showed a significant portion of areas with uncertain pollution status. The positive matrix factorization (PMF) model identified three major sources: agricultural (29%), vehicular emissions (25%), and industrial (46%). The probabilistic assessment of health hazards indicated that both carcinogenic and non-carcinogenic risks for adult male, adult female, and children were deemed unacceptable. Moreover, children faced a higher health hazard compared to adults. For adult male, adult female, and children, industrial operations contributed 48.4%, 42.7%, and 71.2% of the carcinogenic risks, respectively and these risks were associated with Ni and Cr as the main pollutants of concern. The study emphasizes valuable scientific insights for environmental managers to tackle soil pollution from HMs by effectively managing anthropogenic sources. It could aid in devising strategies for environmental remediation engineering and refining industry standards.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Humanos , Monitoramento Ambiental , Bangladesh , Medição de Risco , Poluição Ambiental , Agricultura , Método de Monte Carlo
5.
Huan Jing Ke Xue ; 45(9): 5474-5484, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323164

RESUMO

In Lijiang City, as a typical example, 93 soil samples were collected from the study area, and soil pH; organic matter; and heavy metals arsenic (As), mercury (Hg), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and chromium (Cr) were determined. We explored the sources of heavy metals in the study area by means of Positive Definite Matrix Factorization (PMF) modeling and analyzed the impact of influencing factors by combining seven heavy metals with 13 influencing factors in a GeoDetector. The results showed that the mean values of soil heavy metals ω(As), ω(Hg), ω(Cu), ω(Zn), ω(Pb), ω(Cd), and ω(Cr) in the study area were 17.55, 0.19, 86.75, 164.84, 28.95, 0.39, and 167.87 mg·kg-1, respectively, which were greater than the background values of soils in Yunnan Province (except for As and Pb). Regarding spatial distribution, the high values of Cu and Cr content were mainly concentrated in Yulong Naxi Autonomous County; the high value areas of As, Hg, Pb, and Cd were mainly concentrated in Ninglang Yi Autonomous County; and the high value of Zn content was mainly concentrated in Huaping County. Correlation analysis and PMF modeling revealed that the main sources of heavy metals As and Hg in the study area were industrial sources, Zn was from transportation pollution sources, Cr and Cu were from natural sources, and Cd and Pb were from agricultural sources. Further, the factor detector of the GeoDetector found that soil pH and organic matter (OC) had strong explanatory power for the content of seven heavy metals, and the interaction detector found that the results following the interaction of different influencing factors were nonlinear enhancement or two-factor enhancement, in which the interaction of OC and pH was the dominant factor for the spatial differentiation of heavy metals. This provides an important scientific basis for the protection of the soil environmental health and sustainable development in Lijiang City.

6.
Huan Jing Ke Xue ; 45(9): 5526-5537, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323169

RESUMO

This study focused on a molybdenum mining area in the Qinling Mountains (Shaanxi segment). Crop and corresponding soil samples were collected from the vicinity of the mining area, and the concentrations of six heavy metals (Cr, Cu, Zn, As, Cd, and Pb) were determined. Soil heavy metal pollution was assessed using single-factor, comprehensive pollution, and geo-accumulation index methods. The primary sources of soil heavy metals were analyzed using the PMF model. A health risk assessment for soil and crops was conducted using the USEPA model. The results revealed severe pollution of agricultural soils by Cr, Cu, Zn, Cd, and Pb. Among these, Cr may have been primarily sourced from chrombismite nearby mining activities, contributing to 85.1% of the pollution. Cu and As were mainly sourced from agriculture, contributing 50.3% and 70.6%, respectively. Zn and Cd were primarily sourced from natural sources such as metal slag dust and rainwash from the mining area, contributing 73.5% and 48.7%, respectively. Pb was primarily sourced from transportation sources, contributing to 54.7% of the pollution. Crop metal contamination was especially severe for Cr, followed by Pb, whereas As and Cd contamination was relatively lower. Crops were significantly impacted by heavy metal pollution in agricultural soils. The health risk assessment indicated non-carcinogenic and carcinogenic risks for children due to soil heavy metals, whereas adults faced acceptable levels of risk. Both adults and children were exposed to highly significant non-carcinogenic and carcinogenic risks from heavy metals in the crops. Moreover, it is essential to implement effective measures to control heavy metal pollution from tailings to safeguard nearby residents, especially children, from adverse health risks.


Assuntos
Produtos Agrícolas , Monitoramento Ambiental , Metais Pesados , Mineração , Molibdênio , Poluentes do Solo , Metais Pesados/análise , Poluentes do Solo/análise , Medição de Risco , China , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Molibdênio/análise , Humanos
7.
Toxics ; 12(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39330611

RESUMO

This study assessed the presence of potentially toxic elements (PTEs) in China's northeastern black soil belt, an area with limited prior research. We collected 304 soil samples (0-20 cm) from Gonghe Town, Hailun City, and analyzed the PTE contamination degree using the single-factor pollution index and Nemerow pollution index. The results demonstrated that the mean concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were 11.16, 0.11, 65.29, 22.56, 0.03, 27.07, 26.09, and 66.01 mg/kg, respectively. Source apportionment was conducted via correlation analysis, principal component analysis, and positive matrix factorization, identifying four main sources: natural (33.2%), irrigation (29.5%), fuel (23.4%), and fertilizer (13.2%). The ecological risk index indicated a slight ecological risk, while the human health risk showed that non-carcinogenic risks were negligible and carcinogenic risks were acceptable. Our findings emphasize the need to prioritize controlling PTEs from fertilizer, particularly cadmium, and to a lesser extent, irrigation and fuel sources, focusing on As, Pband Hg. This research provides critical insights for policymakers aiming to manage PTE contamination in black soils.

8.
Environ Res ; 263(Pt 1): 120002, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278585

RESUMO

Antimicrobial resistance poses the most formidable challenge to public health, with plasmid-mediated horizontal gene transfer playing a pivotal role in its global spread. Bisphenol compounds (BPs), a group of environmental contaminants with endocrine-disrupting properties, are extensively used in various plastic products and can be transmitted to food. However, the impact of BPs on the plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) has not yet been elucidated. Herein, we demonstrate that BPs could promote the conjugative transfer frequency of RP4-7 and clinically multidrug-resistant plasmids. Furthermore, the promoting effect of BPs on the plasmid transfer was also confirmed in a murine model. Microbial diversity analysis of transconjugants indicated an increase in α diversity in the BPAF-treated group, along with the declined richness of some beneficial bacteria and elevated richness of Faecalibaculum rodentium, which might serve as an intermediate repository for resistance plasmids. The underlying mechanisms driving the enhanced conjugative transfer upon BPAF treatment include exacerbated oxidative stress, disrupted membrane homeostasis, augmented energy metabolism, and the increased expression of conjugation-related genes. Collectively, our findings highlight the potential risk associated with the exacerbated dissemination of AMR both in vitro and in vivo caused by BPs exposure.

9.
Sci Total Environ ; 953: 175987, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39244067

RESUMO

The presence of heavy metals and metalloids (metal(loid)s) in the food chain is a global problem, and thus, metal(loid)s are considered to be Potentially Toxic Elements (PTEs). Arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd) are identified as prominent hazards related to human health risks throughout the food chain. This study aimed to carry out a source attribution for metal(loid)s in shallow topsoil of north-midlands, northwest, and border counties of the Republic of Ireland, followed by an assessment of the potential ecological and human health risks. The positive Matrix Factorization (PMF) was used for source characterization of PTEs, followed by the Monte Carlo simulation method, used for a probabilistic model to evaluate potential human health risks. The mean concentrations of prioritized metal(loid)s in the topsoil range in the order of Pb (28.83 mg kg-1) > As (7.81 mg kg-1) > Cd (0.51 mg kg-1) > Hg (0.11 mg kg-1) based on the open-source Tellus dataset. This research identified three primary sources of metal(loid) pollution: geogenic sources (36 %), mixed sources of historical mining and natural origin (33 %), and anthropogenic activities (31 %). The ecological risk assessment showed that Ireland's soil exhibits low-moderate pollution levels however, concerns remain for Cd and As levels. All metal(loid)s except Cd showed acceptable non-carcinogenic risk, while Cd and As accounted for high to moderate potential cancer risks. Potato consumption (if grown on land with elevated metal(loid) levels), Cd concentration in soil, and bioaccumulation factor of Cd in potatoes were the three most sensitive parameters. In conclusion, metal(loid)s in Ireland present low to moderate ecological and human health risks. It underscores the need for policies and remedial strategies to monitor metal(loid) levels in agricultural soil regularly and the production of crops with low bioaccumulation in regions with elevated metal(loid) levels.


Assuntos
Monitoramento Ambiental , Metaloides , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Humanos , Metaloides/análise , Irlanda , Solo/química , Medição de Risco
10.
Environ Geochem Health ; 46(11): 451, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316207

RESUMO

Understanding the health risks of polycyclic aromatic hydrocarbons (PAHs) in dust from city parks and prioritizing sources for control are essential for public health and pollution management. The combination of Source-specific and Monte Carlo not only reduces management costs, but also improves the accuracy of assessments. To evaluate the sources of PAHs in urban park dust and the possible health risks caused by different sources, dust samples from 13 popular parks in Kaifeng City were analyzed for PAHs using gas chromatograph-mass spectrometer (GC-MS). The results showed that the surface dust PAH content in the study area ranged from 332.34 µg·kg-1 to 7823.03 µg·kg-1, with a mean value of 1756.59 µg·kg-1. Nemerow Composite Pollution Index in the study area ranged from 0.32 to 14.41, with a mean of 2.24, indicating that the overall pollution warrants attention. Four pollution sources were identified using the positive matrix factorization (PMF) model: transportation source, transportation-coal and biomass combustion source, coke oven emission source, and petroleum source, with contributions of 33.74%, 25.59%, 22.14%, and 18.54%, respectively. The Monte Carlo cancer risk simulation results indicated that park dust PAHs pose a potential cancer risk to all three populations (children, adult male and adult female). Additionally, the cancer risk for children was generally higher than that for adult males and females, with transportation sources being the main contributor to the carcinogenic risk. Lastly, sensitivity analyses results showed that the toxic equivalent concentration (CS) is the parameter contributing the most to carcinogenic risk, followed by Exposure duration (ED).


Assuntos
Poeira , Método de Monte Carlo , Hidrocarbonetos Policíclicos Aromáticos , Poeira/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Humanos , Criança , Adulto , Cidades , Parques Recreativos , Masculino , Feminino , Neoplasias/epidemiologia , Poluentes Atmosféricos/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental/métodos , Exposição Ambiental , Adolescente
11.
Toxics ; 12(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39195683

RESUMO

The continuous monitoring of PM2.5 (including 12 metal elements) was conducted in Jinan, a city with poor air quality in China, during the 13th Five-Year Plan (2016-2020). Positive matrix factorization (PMF) was used to identify emission sources of PM2.5-bound metals, and the health risks of the metals and their emission sources were assessed. During the study period, the concentration of most metals showed a decreasing trend (except Al and Be), and a significant seasonal difference was found: winter > fall > spring > summer. The PMF analysis showed that there were four main sources of PM2.5-bound metals, and their contributions to the total metals (TMs) were dust emissions (54.3%), coal combustion and industrial emissions (22.3%), vehicle emissions (19.3%), and domestic emissions (4.1%). The results of the health risk assessment indicated that the carcinogenic risk of metals (Cr and As) exceeded the acceptable level (1 × 10-6), which was of concern. Under the influence of emission reduction measures, the contribution of emission sources to health risks changes dynamically, and the emission sources that contribute more to health risks were coal combustion and industrial emissions, as well as vehicle emissions. In addition, our findings suggest that a series of emission reduction measures effectively reduced the health risk from emission sources of PM2.5-bound metals.

12.
J Hazard Mater ; 478: 135481, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39128147

RESUMO

Urban fragmented vegetable fields offer fresh produce but pose a potential risk of heavy metal (HM) exposure. Thus, this study investigated HM sources and health risks in the soil-vegetable systems of Chongqing's central urban area. Results indicated that Cd was the primary pollutant, with 28.33 % of soil samples exceeding the screening value. Amaranth was particularly problematic, exceeding thresholds for Cd, Hg, and Cr, and both amaranth and celery showed significantly higher HM accumulation (p < 0.05). The HM pollution level in the soil-vegetable system was moderate or above. The sources of HMs identified via Positive matrix factorization (PMF) model included agricultural activities (18.19 %), natural soil parent material (25.88 %), mixed metal smelting and transportation (30.72 %), and coal combustion (25.21 %). Furthermore, evaluations using the Random Forest (RF) model revealed an intricate interaction of factors influencing the presence of HMs, where enterprise density, population density, and road density played significant roles in HMs accumulation. Monte Carlo assessments revealed higher non-carcinogenic risks for children (Pb, As) and greater carcinogenic risks for adults (Cd). Therefore, the issue of HM pollution in soils and vegetables from fragmented fields in industrial urban areas need attention, given the potential for elevated health risks with long-term vegetable consumption.


Assuntos
Aprendizado de Máquina , Metais Pesados , Método de Monte Carlo , Poluentes do Solo , Verduras , Verduras/química , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco , Humanos , China , Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Agricultura
13.
J Nanobiotechnology ; 22(1): 506, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180102

RESUMO

BACKGROUND: Diabetic atherosclerosis is one of the main causes of morbidity and mortality worldwide, but its therapeutic options are limited. Liraglutide (LIR), a synthetic analog of GLP-1 approved as an anti-obesity drug by the FDA, has been reported as a promising drug for diabetic atherosclerosis. However, the main problem with LIR is its use that requires regular parenteral injections, which necessitates the improvement of drug delivery for increased efficiency and minimization of injection numbers. RESULTS: The objective of our present study was to prepare and characterize nanoparticles (BSA@LIR-PMF) for targeted drug delivery using LIR-encapsulated platelet membrane fragments (PMF) coated bovine serum albumin (BSA). We used various methods to characterize the prepared nanoparticles and evaluated their efficiency on diabetes-induced atherosclerosis in vitro and in vivo. The results showed that the nanoparticles were spherical and had good stability and uniform size with intact membrane protein structure. The loading and encapsulation rates (LR and ER) of BSA@LIR-PMF were respectively 7.96% and 85.56%, while the cumulative release rate was around 77.06% after 24 h. Besides, we also examined the impact of BSA@LIR-PMF on the proliferation, migration, phagocytosis, reactive oxygen species (ROS) levels, oxidative phosphorylation, glycolysis, lactate and ATP levels, and lipid deposition in the aortas. The results indicated that BSA@LIR-PMF could effectively inhibit ox-LDL-stimulated abnormal cell proliferation and migration, reduce the level of ROS and lactate concentration, and enhance the level of ATP, thereby improving oxidative phosphorylation in ox-LDL-treated cells. CONCLUSION: BSA@LIR-PMF significantly inhibited diabetes-induced atherosclerosis. It was anticipated that the BSA@LIR-PMF nanoparticles might be used for treating diabetes-associated cardiovascular complications.


Assuntos
Aterosclerose , Plaquetas , Liraglutida , Soroalbumina Bovina , Animais , Aterosclerose/tratamento farmacológico , Liraglutida/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Soroalbumina Bovina/química , Camundongos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Bovinos , Humanos , Tamanho da Partícula
14.
Ann Hematol ; 103(9): 3573-3583, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39145781

RESUMO

Primary myelofibrosis (PMF) is the most aggressive of the myeloproliferative neoplasms and patients require greater attention and likely require earlier therapeutic intervention. Currently approved treatment options are limited in their selective suppression of clonal proliferation resulting from driver- and coexisting gene mutations. Janus kinase inhibitors are approved for symptomatic patients with higher-risk PMF. Additionally, most ongoing clinical studies focus on patients with higher-risk disease and/or high rates of transfusion dependency. Optimal treatment of early/lower-risk PMF remains to be identified and needs randomized clinical trial evaluations. Pegylated interferon alfa is recommended for symptomatic lower-risk PMF patients based on phase 2 non-randomized studies and expert opinion. Ropeginterferon alfa-2b (ropeg) is a new-generation pegylated interferon-based therapy with favorable pharmacokinetics and safety profiles, requiring less frequent injections than prior formulations. This randomized, double-blind, placebo-controlled phase 3 trial will assess its efficacy and safety in patients with "early/lower-risk PMF", defined as pre-fibrotic PMF or PMF at low or intermediate-1 risk according to Dynamic International Prognostic Scoring System-plus. Co-primary endpoints include clinically relevant complete hematologic response and symptom endpoint. Secondary endpoints include progression- or event-free survival, molecular response in driver or relevant coexisting gene mutations, bone marrow response, and safety. Disease progression and events are defined based on the International Working Group criteria and well-published reports. 150 eligible patients will be randomized in a 2:1 ratio to receive either ropeg or placebo. Blinded sample size re-estimation is designed. Ropeg will be administered subcutaneously with a tolerable, higher starting-dose regimen. The study will provide important data for the treatment of early/lower-risk PMF for which an anti-clonal, disease-modifying agent is highly needed.


Assuntos
Interferon alfa-2 , Interferon-alfa , Polietilenoglicóis , Mielofibrose Primária , Proteínas Recombinantes , Humanos , Mielofibrose Primária/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/administração & dosagem , Método Duplo-Cego , Interferon-alfa/uso terapêutico , Interferon-alfa/efeitos adversos , Interferon-alfa/administração & dosagem , Interferon alfa-2/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Idoso
15.
Toxics ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39058138

RESUMO

Volatile organic compounds (VOC) are considered a class of pollutants with a significant presence in indoor and outdoor air and serious health effects. The aim of this study was to measure and evaluate the levels of outdoor and indoor VOCs at selected sites on Rhodes Island, Greece, during the cold and warm periods of 2023. Spatial and seasonal variations were evaluated; moreover, cancer and non-cancer inhalation risks were assessed. For this purpose, simultaneous indoor-outdoor air sampling was carried out on the island of Rhodes. VOCs were determined by Thermal Desorption-Gas Chromatography/Mass Spectroscopy (TD-GC/MS). Fifty-six VOCs with frequencies ≥ 50% were further considered. VOC concentrations (∑56VOCs) at all sites were found to be higher in the warm period. In the warm and cold sampling periods, the highest concentrations were found at the port of Rhodes City, while total VOC concentrations were dominated by alkanes. The Positive Matrix Factorization (PMF) model was applied to identify the VOC emission sources. Non-cancer and cancer risks for adults were within the safe levels.

16.
Environ Geochem Health ; 46(9): 346, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073472

RESUMO

Heavy metals (HMs) seriously harm soil environment and threaten crop quality and human health. The aim of the study was to investigate the characteristics, quantify the sources and assess the risks of HMs in soil of upper Bailang River Basin (UBRB). The results indicated that the soils in UBRB were at a non-polluted level and posed a low ecological risk to the environment as a whole. The main pollutants were Ni and Cr obtained by indices Pi and Igeo. Based on the consideration of toxicity, the fuzzy comprehensive evaluation model and Ei index revealed that Hg and Cd were dominating pollutants and ecological risk factors of soil in UBRB. The positive matrix factorization model ascertained five potential sources of soil HMs, namely, plastic processing, energy activities, parent material, transportation and agriculture mixed source and industrial manufacturing, with contribution rates of 17%, 7%, 15%, 29% and 32%, respectively. Natural source primarily determined the non-carcinogenic risk for all populations, accounting for about 43% of the total risk. Industrial manufacturing mainly determined the carcinogenic risk, accounting for about 45%. For adults, the risk was acceptable for most of the sample points. For children, potential non-carcinogenic risks were present in 13.19% of the sample sites, which were mainly located in the west, and unacceptable carcinogenic risks were present in 57.21% of the sample sites, which were mainly concentrated in the western and central parts.


Assuntos
Monitoramento Ambiental , Metais Pesados , Rios , Poluentes do Solo , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise , China , Humanos , Rios/química , Monitoramento Ambiental/métodos , Adulto , Criança
17.
Radiat Environ Biophys ; 63(3): 307-322, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020222

RESUMO

To enhance stakeholder engagement and foster the inclusion of interests of citizens in radiation protection research, a comprehensive online survey was developed within the framework of the European Partnership PIANOFORTE. This survey was performed in 2022 and presented an opportunity for a wide range of stakeholders to voice their opinions on research priorities in radiation protection for the foreseeable future. Simultaneously, it delved into pertinent issues surrounding general radiation protection. The PIANOFORTE e-survey was conducted in the English language, accommodating a diverse range of participants. Overall, 440 respondents provided their insights and feedback, representing a broad geographical reach encompassing 29 European countries, as well as Canada, China, Colombia, India, and the United States. To assess the outcomes, the Positive Matrix Factorization numerical model was applied, in addition to qualitative and quantitative assessment of individual responses, enabling the discernment of four distinct stakeholder groups with varying attitudes. While the questionnaire may not fully represent all stakeholders due to the limited respondent pool, it is noteworthy that approximately 70% of the participants were newcomers to comparable surveys, demonstrating a proactive attitude, a strong willingness to collaborate and the necessity to continuously engage with stakeholder groups. Among the individual respondents, distinct opinions emerged particularly regarding health effects of radiation exposure, medical use of radiation, radiation protection of workers and the public, as well as emergency and recovery preparedness and response. In cluster analysis, none of the identified groups had clear preferences concerning the prioritization of future radiation protection research topics.


Assuntos
Proteção Radiológica , Inquéritos e Questionários , Humanos , Internet , Participação dos Interessados , Masculino , Feminino
18.
Sci Total Environ ; 948: 174452, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38964396

RESUMO

Airborne trace elements (TEs) present in atmospheric fine particulate matter (PM2.5) exert notable threats to human health and ecosystems. To explore the impact of meteorological conditions on shaping the pollution characteristics of TEs and the associated health risks, we quantified the variations in pollution characteristics and health risks of TEs due to meteorological impacts using weather normalization and health risk assessment models, and analyzed the source-specific contributions and potential sources of primary TEs affecting health risks using source apportionment approaches at four sites in Shandong Province from September to December 2021. Our results indicated that TEs experience dual effects from meteorological conditions, with a tendency towards higher TE concentrations and related health risks during polluted period, while the opposite occurred during clean period. The total non-carcinogenic and carcinogenic risks of TEs during polluted period increased approximately by factors of 0.53-1.74 and 0.44-1.92, respectively. Selenium (Se), manganese (Mn), and lead (Pb) were found to be the most meteorologically influenced TEs, while chromium (Cr) and manganese (Mn) were identified as the dominant TEs posing health risks. Enhanced emissions of multiple sources for Cr and Mn were found during polluted period. Depending on specific wind speeds, industrialized and urbanized centers, as well as nearby road dusts, could be key sources for TEs. This study suggested that attentions should be paid to not only the TEs from primary emissions but also the meteorology impact on TEs especially during pollution episodes to reduce health risks in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Aprendizado de Máquina , Material Particulado , Oligoelementos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Oligoelementos/análise , China , Medição de Risco
19.
Bull Environ Contam Toxicol ; 113(2): 16, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068285

RESUMO

In recent years, the coastal area in East China has experienced elevated volatile organic compounds (VOCs) levels during specific periods. VOCs have become one of the major atmospheric pollutants in these areas. In this study, 64 compounds including alkanes, alkenes, halohydrocarbons, aromatics, and oxygenated VOCs (OVOCs) were obtained by the TO-15 method through a 12-month campaign in industrial, urban and suburban areas in the Yangtze River Delta of China. The overall trends of total VOC (TVOC) concentrations at eight sampling sites were as follows: winter > autumn > spring > summer. The proportion of VOC categories was various at industrial sites, while OVOCs and halohydrocarbons had high proportions at urban sites and suburban sites, respectively. Coating, vehicle emission, petrochemical source, industrial source, and gasoline volatilization were identified as the major VOC emission sources by the positive matrix factorization model. Petrochemical and coating sources were the prime VOC sources at industrial sites. Aromatics contributed the most ozone formation potential at industrial sites, while OVOCs provided the main contributions at both urban and suburban sites during four seasons. According to the health risk assessment, a high probability of non-carcinogenic risk existed at three industrial sites. Special attention should be given to certain VOCs, such as acrolein and 1,2-dibromoethane in industrial areas.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Poluentes Atmosféricos/análise , Rios/química , Estações do Ano , Indústrias
20.
J Hazard Mater ; 476: 134894, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38909463

RESUMO

Consumed VOCs are the compounds that have reacted to form ozone and secondary organic aerosol (SOA) in the atmosphere. An approach that can apportion the contributions of primary sources and reactions to the consumed VOCs was developed in this study and applied to hourly VOCs data from June to August 2022 measured in Shijiazhuang, China. The results showed that petrochemical industries (36.9 % and 51.7 %) and oxidation formation (20.6 % and 35.6 %) provided the largest contributions to consumed VOCs and OVOCs during the study period, whereas natural gas (5.0 % and 7.6 %) and the mixed source of liquefied petroleum gas and solvent use (3.1 % and 4.2 %) had the relatively low contributions. Compared to the non-O3 pollution (NOP) period, the contributions of oxidation formation, petrochemical industries, and the mixed source of gas evaporation and vehicle emissions to the consumed VOCs during the O3 pollution (OP) period increased by 2.8, 3.8, and 9.3 times, respectively. The differences in contributions of liquified petroleum gas and solvent use, natural gas, and combustion sources to consumed VOCs between OP and NOP periods were relatively small. Transport of petrochemical industries emissions from the southeast to the study site was the primary consumed pathway for VOCs emitted from petrochemical industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA