Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.223
Filtrar
1.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959870

RESUMO

Electron beam lithography (EBL) stands out as a powerful direct-write tool offering nanometer-scale patterning capability and is especially useful in low-volume R&D prototyping when coupled with pattern transfer approaches like etching or lift-off. Among pattern transfer approaches, lift-off is preferred particularly in research settings, as it is cost-effective and safe and does not require tailored wet/dry etch chemistries, fume hoods, and/or complex dry etch tools; all-in-all offering convenient, 'undercut-free' pattern transfer rendering it useful, especially for metallic layers and unique alloys with unknown etchant compatibility or low etch selectivity. Despite the widespread use of the lift-off technique and optical/EBL for micron to even sub-micron scales, existing reports in the literature on nanofabrication of metallic structures with critical dimension in the 10-20 nm regime with lift-off-based EBL patterning are either scattered, incomplete, or vary significantly in terms of experimental conditions, which calls for systematic process optimization. To address this issue, beyond what can be found in a typical photoresist datasheet, this paper reports a comprehensive study to calibrate EBL patterning of sub-50 nm metallic nanostructures including gold nanowires and nanogaps based on a lift-off process using bilayer polymethyl-methacrylate as the resist stack. The governing parameters in EBL, including exposure dose, soft-bake temperature, development time, developer solution, substrate type, and proximity effect are experimentally studied through more than 200 EBL runs, and optimal process conditions are determined by field emission scanning electron microscope imaging of the fabricated nanostructures reaching as small as 11 nm feature size.

2.
Nano Lett ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037721

RESUMO

Magneto-optical (MO) polymer nanocomposites have emerged as alternatives to conventional MO crystals, particularly in nanophotonics applications, thanks to their better processing flexibility and superior Verdet constants. However, a higher Verdet constant commonly comes with excessive optical loss due to increased absorption and scattering, resulting in a constant or reduced figure-of-merit (FOM) defined as the Verdet constant over optical loss. By doping magnetite (Fe3O4) nanoparticles with Tb3+ ions, we report a new strategy to enhance the Verdet constant without increasing the optical loss. The Fe3O4:Tb3+ nanocomposite is one of a kind that simultaneously achieves a state-of-the-art Verdet constant of 5.6 × 105 °/T·m and a state-of-the-art FOM of 31°/T in the near-infrared region.

3.
ACS Appl Mater Interfaces ; 16(28): 37017-37027, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968699

RESUMO

In this work, the production of novel multishell silver indium selenide quantum dots (QDs) shelled with zinc selenide and zinc sulfide through a multistep synthesis precisely designed to develop high-quality red-emitting QDs is explored. The formation of the multishell nanoheterostructure significantly improves the photoluminescence quantum yield of the nanocrystals from 3% observed for the silver indium selenide core to 27 and 46% after the deposition of the zinc selenide and zinc sulfide layers, respectively. Moreover, the incorporation of the multishelled QDs in a poly(methyl methacrylate) (PMMA) matrix via in situ radical polymerization is investigated, and the role of thiol ligand passivation is proven to be fundamental for the stabilization of the QDs during the polymerization step, preventing their decomposition and the relative luminescence quenching. In particular, the role of interface chemistry is investigated by considering both surface passivation by inorganic zinc chalcogenide layers, which allows us to improve the optical properties, and organic thiol ligand passivation, which is fundamental to ensuring the chemical stability of the nanocrystals during in situ radical polymerization. In this way, it is possible to produce silver-indium selenide QD-PMMA composites that exhibit bright red luminescence and high transparency, making them promising for potential applications in photonics. Finally, it is demonstrated that the new silver indium selenide QD-PMMA composites can serve as an efficient color conversion layer for the production of red light-emitting diodes.

4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999953

RESUMO

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Assuntos
Cerâmica , Nanopartículas , Poliésteres , Polimetil Metacrilato , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Poliésteres/química , Polimetil Metacrilato/química , Alicerces Teciduais/química , Cerâmica/química , Cerâmica/farmacologia , Nanopartículas/química , Animais , Camundongos , Osso e Ossos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Linhagem Celular
5.
ACS Appl Mater Interfaces ; 16(27): 35825-35833, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38941159

RESUMO

Sequential infiltration synthesis (SIS) is a scalable and valuable technique for the synthesis of organic-inorganic materials with several potential applications at the industrial level. Despite the increasing interest for this technique, a clear picture of the fundamental physicochemical phenomena governing the SIS process is still missing. In this work, infiltration of Al2O3 into thin poly(methyl methacrylate) (PMMA) films using trimethyl aluminum (TMA) and H2O as precursors is investigated by operando dynamic spectroscopic ellipsometry (SE) analysis. The TMA diffusion coefficient values at temperatures ranging from 70 to 100 °C are determined, and the activation energy for the TMA diffusion process in PMMA is found to be Ea = 2.51 ± 0.03 eV. Additionally, systematic data about reactivity of TMA molecules with the PMMA matrix as a function of temperature are obtained. These results provide important information, paving the way to the development of a comprehensive theory for the modeling of the SIS process.

6.
J Mater Res ; 39(10): 1513-1524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882212

RESUMO

3D CsPbX3 inorganic perovskite materials have attracted much attention in optoelectronic devices because of their strong absorbance, high photoluminescent quantum yield, tunable band gap, and narrow emission bandwidth. However, their practical usefulness is limited due to their poor stability in ambient conditions. Here, we created photoluminescent 0D Cs4PbX6 (X = Br, Br/I) suspensions in toluene by adding a small amount of water. The photoluminescent 0D Cs4PbX6 perovskite was mixed with polymethylmethacrylate (PMMA) forming 0D Cs4PbX6/PMMA composite films with higher PL, stability, transparency, and transmittance than that of the 3D CsPbX3/PMMA composite films prepared separately. Moreover, the PL intensity maintains 90% of the initial value after 30 days in water, showing excellent water stability. The flexible white-light LED device prepared by the composite films illustrated good luminescence performance with color rendering index 74.77, chromaticity coordinates (0.32, 0.33), and color temperature 6997 K.

7.
Medicina (Kaunas) ; 60(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38929477

RESUMO

Background and Objectives: Proximal junctional kyphosis (PJK) and failure (PJF), the most prevalent complications following long-segment thoracolumbar fusions for adult spinal deformity (ASD), remain lacking in defined preventive measures. We studied whether one of the previously reported strategies with successful results-a prophylactic augmentation of the uppermost instrumented vertebra (UIV) and supra-adjacent vertebra to the UIV (UIV + 1) with polymethylmethacrylate (PMMA)-could also serve as a preventive measure of PJK/PJF in minimally invasive surgery (MIS). Materials and Methods: The study included 29 ASD patients who underwent a combination of minimally invasive lateral lumbar interbody fusion (MIS-LLIF) at L1-2 through L4-5, all-pedicle-screw instrumentation from the lower thoracic spine to the sacrum, S2-alar-iliac fixation, and two-level balloon-assisted PMMA vertebroplasty at the UIV and UIV + 1. Results: With a minimum 3-year follow-up, non-PJK/PJF group accounted for fifteen patients (52%), PJK for eight patients (28%), and PJF requiring surgical revision for six patients (21%). We had a total of seven patients with proximal junctional fracture, even though no patients showed implant/bone interface failure with screw pullout, probably through the effect of PMMA. In contrast to the PJK cohort, six PJF patients all had varying degrees of neurologic deficits from modified Frankel grade C to D3, which recovered to grades D3 and to grade D2 in three patients each, after a revision operation of proximal extension of instrumented fusion with or without neural decompression. None of the possible demographic and radiologic risk factors showed statistical differences between the non-PJK/PJF, PJK, and PJF groups. Conclusions: Compared with the traditional open surgical approach used in the previous studies with a positive result for the prophylactic two-level cement augmentation, the MIS procedures with substantial benefits to patients in terms of less access-related morbidity and less blood loss also provide a greater segmental stability, which, however, may have a negative effect on the development of PJK/PJF.


Assuntos
Cimentos Ósseos , Cifose , Complicações Pós-Operatórias , Fusão Vertebral , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Cifose/prevenção & controle , Cifose/cirurgia , Fusão Vertebral/métodos , Fusão Vertebral/efeitos adversos , Fusão Vertebral/instrumentação , Complicações Pós-Operatórias/prevenção & controle , Vértebras Lombares/cirurgia , Vértebras Torácicas/cirurgia , Incidência , Adulto , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Polimetil Metacrilato/administração & dosagem , Polimetil Metacrilato/uso terapêutico , Vertebroplastia/métodos , Vertebroplastia/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento
8.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930240

RESUMO

In order to further optimize the performance of PMMA (Polymethyl Methacrylate) repair mortar. In this paper, fly ash, talcum powder and wollastonite powder are used as fillers to modify the PMMA repair mortar. The effects of these three fillers on the working performance, mechanical performance and durability of PMMA repair mortar were explored. The study shows that the three fillers have good effect on the bond strength of the repair mortar, in which the fly ash has the best effect on the mechanical performance. The mechanical properties of PMMA repair mortar were best when the amount of fly ash was 60 phr (parts per hundred, representing the amount of the material added per hundred parts of PMMA). At this time, the 28 d compressive strength was 71.26 MPa and the 28 d flexural strength was 28.09 MPa, which increased by 13.31% and 15.33%, respectively. Wollastonite powder had the least negative effect on the setting time of the PMMA repair mortar. When the dosage of wollastonite powder was increased to 100 phr, the setting time was only extended from 65 min to 94 min. When the talc dosage was 60 phr, the best improvement in salt freezing resistance was achieved. After 100 cycles of salt freezing, the mass loss rate and strength loss rate decreased to 0.159% and 4.97%, respectively, which were 75.1% and 37.7% higher than that of the control group. The addition of all three fillers reduced the porosity and the proportion of harmful pores in the mortar. This study contributes to a comprehensive understanding how different types of fillers affect PMMA repair mortars, and it also provides theoretical support for the further development of low-temperature rapid repair mortars.

9.
ACS Appl Bio Mater ; 7(6): 4039-4050, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830835

RESUMO

We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.


Assuntos
Antibacterianos , Cimentos Ósseos , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polimetil Metacrilato , Pseudomonas aeruginosa , Staphylococcus aureus , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas/química
10.
Dent Mater ; 40(8): 1216-1230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851967

RESUMO

This work aims to demonstrate the effect of ZrO2 and MgO inclusion into the Poly(methyl methacrylate) (PMMA). To fabricate novel hybrid composites via heat cure method, various composites (PZM2, PZM4 and PZM6) were synthesized in the system [(95-x) PMMA + 5 ZrO2 + x MgO] (x = 2, 4, and 6) respectively. Density of the prepared composites were determined and varying between 1.035-1.152 g/cm3. X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) followed by EDAX and mechanical testing were performed to evaluate the fabricated composite properties. Moreover, to explore the structure of the fabricated composites the 13 C CP-MAS SSNMR and 1 H-13 C Phase-Modulated Lee Goldberg (PMLG) HETCOR Spectrum were recorded which clarify chemical shifting and motional dynamics of the composites. Mechanical tests were performed by UTM and the obtained parameters such as compressive strength, Young's modulus, fracture toughness, brittleness coefficient, flexural strength and flexural modulus are found to be in the range of 91-100 MPa, 0.48-0.51 GPa, 9.122-9.705 MPa.m1/2, 0.66-0.815, 51.03-42.78 MPa and 499-663 MPa respectively. Some more mechanical parameters such as proportional limit, elastic limit, failure strength, modulus of resilience and modulus of toughness were also calculated. Furthermore, tribological properties were also determined and the coefficient of friction (COF) was decreased by 17.4 % and 38 % for composite PZM6 at 20 N and 40 N as compared to the composite PZM2 and the lowest wear volume of 1.55 mm3 was observed for PZM2, whereas the maximum volume loss of 5.64 mm3 is observed for composite PZM6. To check out the biocompatibility, cytotoxicity and genotoxicity of the fabricated composites the Trypan-blue assay was also performed for PZM2 and PZM6 composites. Dissection on the gut of larvae was also performed on the both composites followed by DAPI and DCFH-DA staining. Therefore, these synthesized samples can be used for the fabrication of denture materials.


Assuntos
Resinas Compostas , Resistência à Flexão , Óxido de Magnésio , Teste de Materiais , Microscopia Eletrônica de Varredura , Polimetil Metacrilato , Difração de Raios X , Zircônio , Zircônio/química , Polimetil Metacrilato/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resinas Compostas/química , Óxido de Magnésio/química , Propriedades de Superfície , Módulo de Elasticidade , Força Compressiva , Materiais Dentários/química
11.
Iowa Orthop J ; 44(1): 63-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919359

RESUMO

Background: The specific aim of this study was to evaluate the mechanical properties of cement prepared with the advanced one-step mixing system and whether the addition of vacuum conditions yielded an appreciable improvement in the biomechanical strength or overall quality of bone cement. Methods: The advanced one-step mixing system was used. Twelve specimens were prepared by mixing under vacuum conditions and 12 specimens were prepared by mixing without a vacuum. Radiographs of cement specimens were analyzed to determine the porosity of the test region. Tensile testing of the specimens was performed with a loading rate of 2.54mm/min at room temperature. The ultimate tensile strength (UTS) and the tensile elastic modulus (E) were determined for each sample. Results: The UTS of the bone cement samples mixed under vacuum conditions were not significantly different than those mixed without vacuum (vacuum: 39±6MPa; non-vacuum: 35±6MPa; p=0.637). The E of samples mixed under vacuum conditions was significantly higher than the bone cement mixed without vacuum (vacuum: 2.78±0.06GPa; non-vacuum: 2.63±0.15GPa; p=0.019). Radiographic images showed samples mixed under vacuum conditions contained fewer defects than the samples mixed without vacuum (vacuum: 3.5%±3.3% (range: 0.0%-9.0%); non-vacuum: 6.9%±1.0% (range: 4.6%-8.2%)). Conclusion: Mixing bone cement with the advanced one-step mixing system under vacuum conditions does not produce an appreciable difference in the UTS of the bone cement in a bench biomechanical testing model compared to the bone cement mixed without vacuum. It does, however, create a less porous cement mixture with a higher E compared to cement mixed without vacuum. Level of Evidence: V.


Assuntos
Cimentos Ósseos , Teste de Materiais , Resistência à Tração , Vácuo , Polimetil Metacrilato/química , Humanos , Módulo de Elasticidade , Fenômenos Biomecânicos , Porosidade
12.
J Biomater Sci Polym Ed ; : 1-16, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815001

RESUMO

The utilization of polymethyl methacrylate (PMMA) bone cement is employed for the purpose of stabilizing fractured vertebral bodies. The existence of a mechanical imbalance in hard polymethylmethacrylate (PMMA) bone cement has the potential to increase the likelihood of a fracture occurring in the neighbouring vertebral body. In order to reduce potential difficulties, the primary goal of this study is to investigate the potential benefits of increasing PMMA bone cement's bioactivity and lowering its elastic modulus. The incorporation of a 10% volume fraction of hyaluronic acid (HyA) and polyethylene glycol (PEG) into the bone cement led to an improvement in the bioactivity and decreasing of elastic modulus of polymethylmethacrylate (PMMA). The integration of HyPE gel phase presents several advantages over pure PMMA bone cement, including enhanced setting parameters, improved degradability, and increased biocompatibility. The gel phase is additionally accountable for a reduction in the elastic modulus of polymethylmethacrylate (PMMA) bone cement. In addition, the existence of a porous structure that arises from the degradation of the HyPE gel phase delivers a significant amount of room, thereby enhancing the process of bone regeneration when implanted in the femur of rabbits. The utilization of HyPE in PMMA has been shown through comprehensive µ-CT analysis to enhance bone formation, thereby promoting osteointegration at the implantation site. Furthermore, the histological analysis demonstrated the existence of osteogenic activity in the PMMA polyethylene glycol supplemented with 10% HyA and 10% PEG after a 2-month period subsequent to implantation.

13.
Chin Clin Oncol ; 13(2): 20, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711180

RESUMO

BACKGROUND: The ideal treatment for giant cell tumor of bone (GCTB) is still controversial. Various surgical adjuvants have been introduced following intralesional curettage to improve local control rates. However, findings from relevant studies are inconsistent, and no consensus has been reached. The purpose of this study is to determine what intraoperative adjuvant is effective in decreasing the recurrence of GCTB. METHODS: We performed a systematic review and meta-analysis of articles published in the PubMed and Embase electronic databases which assessed the recurrence rate of GCTB following intralesional curettage with or without various surgical adjuvants. Two authors independently evaluated all publications. Meta-analysis was performed with Stata/MP (Version 17.0, StataCorp LLC, TX, USA) and Review Manager (RevMan, Version 5.4.1, The Cochrane Collaboration, 2020). Pooled risk ratio (RR) was used for analysis, with P values less than 0.05 considered statistically significant. RESULTS: Twenty-four studies involving 2,579 patients were included in this analysis. The overall recurrence rates for patients treated with or without high-speed burring (HSB) are 11.9% (26/218) and 47.7% (92/193), respectively. The pooled RR for tumor recurrence is 0.33 (95% CI: 0.22 to 0.49, P<0.001). In the meanwhile, the overall recurrence rates for patients treated with or without chemical adjuvants are 23.5% (77/328) and 26.1% (73/280), respectively, with a pooled RR of 0.84 (95% CI: 0.63 to 1.10, P=0.89). Additionally, the overall recurrence rates for patients treated with or without polymethyl methacrylate (PMMA) are 20.4% (205/1,006) and 33.4% (314/939), respectively, with a pooled RR of 0.59 (95% CI: 0.50 to 0.69, P<0.001). CONCLUSIONS: Intraoperative application of HSB or PMMA has an additional antitumor effect, while the use of phenol or H2O2 fails to make any significant difference (PROSPERO: CRD42022344262).


Assuntos
Neoplasias Ósseas , Curetagem , Tumor de Células Gigantes do Osso , Humanos , Tumor de Células Gigantes do Osso/cirurgia , Curetagem/métodos , Neoplasias Ósseas/cirurgia , Neoplasias Ósseas/patologia
14.
ACS Appl Mater Interfaces ; 16(22): 29210-29216, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770774

RESUMO

Cs3Cu2I5 nanocrystals (NCs) are considered to be promising materials due to their high photoluminescence efficiency, lack of lead toxicity, and X-ray responsiveness. However, during the crystallization process, NCs are prone to agglomeration and exhibit uneven size distribution, resulting in several light scattering that severely affect their imaging resolution. Herein, we successfully developed a high-resolution scintillator film by growing copper-based perovskite NCs within a hybrid polymer matrix. By leveraging the ingenious integration of polyvinylidene fluoride (PVDF) and polymethyl methacrylate (PMMA), the size and distribution uniformity of Cs3Cu2I5 NCs can be effectively controlled. Consequently, a high spatial resolution of 14.3 lp mm-1 and a low detection limit of 105 nGy s-1 are achieved, and the scintillator film has excellent flexibility and stability. These results highlight the promising application of Cs3Cu2I5 scintillator films in low-cost, flexible, and high-performance medical imaging.

15.
Toxics ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787131

RESUMO

The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics-NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.

16.
Clin Exp Dent Res ; 10(3): e880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798134

RESUMO

OBJECTIVE: To study the feasibility of using poly methyl methacrylate (PMMA) filament and fused deposition modeling (FDM) to manufacture denture bases via the development of a study that considers both conventional and additive-based manufacturing techniques. MATERIALS AND METHODS: Five sample groups were compared: heat and cold cured acrylic resins, CAD/CAM milled PMMA, 3D-printed PMMA (via FDM), and 3D-printed methacrylate resin (via stereolithography, SLA). All groups were subjected to mechanical testing (flexural strength, impact strength, and hardness), water sorption and solubility tests, a tooth bonding test, microbiological assessment, and accuracy of fit measurements. The performance of sample groups was referred to ISO 20795-1 and ISO/TS 19736. The data was analyzed using one-way ANOVA. RESULTS: Samples manufactured using FDM performed within ISO specifications for mechanical testing, water sorption, and solubility tests. However, the FDM group failed to achieve the ISO requirements for the tooth bonding test. FDM samples presented a rough surface finish which could ultimately encourage an undesirable high level of microbial adhesion. For accuracy of fit, FDM samples showed a lower degree of accuracy than existing materials. CONCLUSIONS: Although FDM samples were a cost-effective option and were able to be quickly manufactured in a reproducible manner, the results demonstrated that current recommended testing regimes for conventionally manufactured denture-based polymers are not directly applicable to additive-manufactured denture base polymers. Therefore, new standards should be developed to ensure the correct implementation of additive manufacturing techniques within denture-based fabrication workflow.


Assuntos
Resinas Acrílicas , Desenho Assistido por Computador , Bases de Dentadura , Teste de Materiais , Polimetil Metacrilato , Impressão Tridimensional , Bases de Dentadura/microbiologia , Polimetil Metacrilato/química , Resinas Acrílicas/química , Planejamento de Dentadura , Humanos , Estudos de Viabilidade , Materiais Dentários/química , Colagem Dentária/métodos , Propriedades de Superfície , Estereolitografia , Resistência à Flexão , Dureza , Solubilidade
17.
Polymers (Basel) ; 16(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732756

RESUMO

High fracture toughness at cryogenic temperature and radiation hardness can be conflicting requirements for the resins for the impregnation of superconducting magnet coils. The fracture toughness of different epoxy-resin systems at room temperature (RT) and at 77 K was measured, and their toughness was compared with that determined for a polyurethane, polycarbonate (PC) and poly(methyl methacrylate) (PMMA). Among the epoxy resins tested in this study, the MY750 system has the highest 77 K fracture toughness of KIC = 4.6 MPa√m, which is comparable to the KIC of PMMA, which also exhibits linear elastic behaviour and unstable crack propagation. The polyurethane system tested has a much higher 77 K toughness than the epoxy resins, approaching the toughness of PC, which is known as one of the toughest polymer materials. CTD101K is the least performing in terms of fracture toughness. Despite this, it is used for the impregnation of large Nb3Sn coils for its good processing capabilities and relatively high radiation resistance. In this study, the fracture toughness of CTD101K was improved by adding the polyglycol flexibiliser Araldite DY040 as a fourth component. The different epoxy-resin systems were exposed to proton and gamma doses up to 38 MGy, and it was found that adding the DY040 flexibiliser to the CTD101K system did not significantly change the irradiation-induced ageing behaviour. The viscosity evolution of the uncured resin mix is not significantly changed when adding the DY040 flexibiliser, and at the processing temperature of 60 °C, the viscosity remains below 200 cP for more than 24 h. Therefore, the new resin referred to as POLAB Mix is now used for the impregnation of superconducting magnet coils.

18.
Magn Reson Chem ; 62(8): 599-604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38558418

RESUMO

Configurational and conformational analysis of the biologically relevant natural product artemisinin was conducted using carbon-carbon residual dipolar couplings (1DCC RDCs) at natural abundance. These RDCs were measured through the 2D-INADEQUATE NMR experiment using a sample aligned in a compressed poly (methyl methacrylate) (PMMA) gel swollen in CDCl3. Singular value decomposition (SVD) fitting analysis of all carbon-carbon bonds, 1DCC RDCs, in relation to the full configuration/conformational space (32 diastereoisomers) of artemisinin, unambiguously identified the correct configuration of artemisinin.


Assuntos
Artemisininas , Carbono , Espectroscopia de Ressonância Magnética , Conformação Molecular , Artemisininas/química , Carbono/química , Estereoisomerismo
19.
Micromachines (Basel) ; 15(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675265

RESUMO

In this study, the fabrication of microfluidic chips through the bonding of poly (methyl methacrylate) (PMMA) boards featuring designed patterns to create a three-dimensional sandwich structure with embedded microchannels was explored. A key focus was optimization of the interface quality of bonded PMMA pairs by adjusting the solvent, such as such as acetone, alcohol, and their mixture. Annealing was conducted below 50 °C to leverage the advantages of low-temperature bonding. Because of the differences in the chemical reactivity of PMMA toward acetone, alcohol, and their combinations, the resulting defect densities at the bonding interfaces differed significantly under low-temperature annealing conditions. To achieve the optimal sealing integrity, bonding pressures of 30 N, 40 N, and 50 N were evaluated. The interface was analyzed through microstructural examination via optical microscopy and stress measurements were determined using digital photoelasticity, while the bonding strength was assessed through tensile testing.

20.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675283

RESUMO

Since ozone is highly corrosive, it can substantially affect the mechanical and chemical properties of the materials; consequently, it could affect the applicability of those materials in medical applications. The effect of ozone sterilization on the chemical and mechanical properties of additively manufactured specimens of biocompatible poly(methyl-methacrylate) was observed. FDM 3D-printed specimens of biocompatible PMMA in groups of five were exposed to high concentrations of ozone generated by corona discharge for different durations and at different ozone concentrations inside an enclosed chamber with embedded and calibrated ozone, temperature, and humidity sensors. A novel approach using laser-induced fluorescence (LIF) and spark-discharge optical emission spectrometry (SD-OES) was used to determine an eventual change in the chemical composition of specimens. Mechanical properties were determined by testing the tensile strength and Young's modulus. A calibrated digital microscope was used to observe the eventual degradation of material on the surface of the specimens. SD-OES and LIF analysis results do not show any detectable sterilization-caused chemical degradation, and no substantial difference in mechanical properties was detected. There was no detectable surface degradation observed under the digital microscope. The results obtained suggest that ozone sterilization appears to be a suitable technique for sterilizing PMMA medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...