Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
Front Plant Sci ; 15: 1416742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993942

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with over 300 members in various species. Nearly all PPR proteins are nuclear-encoded and targeted to the chloroplast and mitochondria, modulating organellar gene expression by participating in RNA metabolism, including mRNA stability, RNA editing, RNA splicing, and translation initiation. Organelle RNA metabolism significantly influences chloroplast and mitochondria functions, impacting plant photosynthesis, respiration, and environmental responses. Over the past decades, PPR proteins have emerged as a research focus in molecular biology due to their diverse roles throughout plant life. This review summarizes recent progress in understanding the roles and molecular mechanisms of PPR proteins, emphasizing their functions in fertility, abiotic and biotic stress, grain quality, and chloroplast development in rice. Furthermore, we discuss prospects for PPR family research in rice, aiming to provide a theoretical foundation for future investigations and applications.

2.
Plant J ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031552

RESUMO

Achieving optimally balanced gene expression within synthetic operons requires regulatory elements capable of providing a spectrum of expression levels. In this study, we investigate the expression of gfp reporter gene in tobacco chloroplasts, guided by variants of the plastid atpH 5' UTR, which harbors a binding site for PPR10, a protein that activates atpH at the posttranscriptional level. Our findings reveal that endogenous tobacco PPR10 confers distinct levels of reporter activation when coupled with the tobacco and maize atpH 5' UTRs in different design contexts. Notably, high GFP expression was not coupled to the stabilization of monocistronic gfp transcripts in dicistronic reporter lines, adding to the evidence that PPR10 activates translation via a mechanism that is independent of its stabilization of monocistronic transcripts. Furthermore, the incorporation of a tRNA upstream of the UTR nearly abolishes gfp mRNA (and GFP protein), presumably by promoting such rapid RNA cleavage and 5' exonucleolytic degradation that PPR10 had insufficient time to bind and protect gfp RNA, resulting in a substantial reduction in GFP accumulation. When combined with a mutant atpH 5' UTR, the tRNA leads to an exceptionally low level of transgene expression. Collectively, this approach allows for tuning of reporter gene expression across a wide range, spanning from a mere 0.02-25% of the total soluble cellular protein. These findings highlight the potential of employing cis-elements from heterologous species and expand the toolbox available for plastid synthetic biology applications requiring multigene expression at varying levels.

3.
Vet Med Sci ; 10(4): e1543, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001602

RESUMO

BACKGROUND: Contagious and economically devastating, peste des petits ruminants (PPR) is a viral disease affecting goats and sheep, causing significant losses in livestock productivity and posing a threat to food security and rural livelihoods worldwide. OBJECTIVES: This study was conducted to assess the status of goat farmer's knowledge, attitude and practice (KAP) about PPR disease at Sylhet district of Bangladesh. METHODS: A comprehensive cross-sectional survey, conducted over 11 weeks, targeted 130 goat owners. Following a pilot study with 20 farmers, a set of 17 validated questions on PPR KAP was validated. Data collection was performed through face-to-face interviews by a trained team using KOBO Toolbox, with interpretation of responses based on established thresholds for knowledge (>65%), attitude (>75%) and practice (>70%). RESULTS: Overall, 67.7% of participants demonstrated a good level of knowledge about PPR disease. Males exhibited 1.42 times higher odds of knowledge compared to females (odds ratio = 1.42). The middle age group (31-45 years) showed significantly higher knowledge levels (83.3%, p < 0.001). Within this age group, positive practice levels were also notably higher (54.8%). Those with a higher secondary education background exhibited the most positive practice levels (>80%). Participants whose additional income came from non-governmental organization employment showed a higher positive practice level (71.4%), 1.46 times higher than other income sources. CONCLUSION: Strategic interventions should prioritize female farmers, educational empowerment and collaboration with non-governmental organizations to bolster livestock health and rural livelihoods in Bangladesh as part of national PPR control strategy to fulfil the goals of Office International des Epizooties/World Organization for Animal Health (OIE/WOAH) and Food and Agriculture Organization (FAO) PPR eradication by 2030.


Assuntos
Fazendeiros , Doenças das Cabras , Cabras , Conhecimentos, Atitudes e Prática em Saúde , Peste dos Pequenos Ruminantes , Animais , Bangladesh/epidemiologia , Peste dos Pequenos Ruminantes/prevenção & controle , Peste dos Pequenos Ruminantes/epidemiologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Doenças das Cabras/psicologia , Fazendeiros/psicologia , Masculino , Estudos Transversais , Feminino , Adulto , Humanos , Pessoa de Meia-Idade , Criação de Animais Domésticos/métodos , Inquéritos e Questionários , Adulto Jovem
4.
Vet J ; : 106185, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908779

RESUMO

The aim of the present study was to investigate the frequency, genetic variability, and phylogeny of the peste des petits ruminants virus (PPRV) in ovine and caprine fetuses. During 2014 and 2017, a total of 1054 embryos/fetuses were collected in Turkey. A real-time RT-PCR assay was used for the detection of the PPRV RNA. Genetic characterization and phylogenetic analysis of the PPRV field isolates were conducted by sequencing fusion (F) protein and nucleoprotein (N) gene segments. Samples were also collected from ewes (n = 83) and nanny goats (n = 3) that had aborted and whose embryos/fetuses were found to be PPRV positive. PPRV positive embryos/fetuses were also tested for the presence of Listeria monocytogenes, Campylobacter spp., Coxiella burnetii, Chlamydophila abortus, Brucella spp., akabane virus, aino virus, bluetongue virus, border disease virus, bovine viral diarrhea virus, Cache Valley virus, and Schmallenberg virus. PPRV RNA was detected in 123 (11.7%) of the 1054 embryos/fetuses, 78 of the 83 (94%) ewes and 3 (100%) nanny goats. Border disease virus RNA and Chlamydophila abortus DNA were detected in 7 and 12 PPRV positive sheep fetuses, respectively, while other bacterial and viral agents were not detected. Phylogenetically, the field isolates in this study belong to lineage IV, and compared to other strains of lineage IV considered in this study, they showed 1 and 5 new amino acid substitutions in the F and N gene sequences, respectively. The results of the study suggest that PPRV plays an important role in abortion. Therefore, PPRV needs to be taken into consideration in sheep and goats abortions.

5.
Biochem Soc Trans ; 52(3): 1243-1251, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884788

RESUMO

Mitochondrial DNA replication is initiated by the transcription of mitochondrial RNA polymerase (mtRNAP), as mitochondria lack a dedicated primase. However, the mechanism determining the switch between continuous transcription and premature termination to generate RNA primers for mitochondrial DNA (mtDNA) replication remains unclear. The pentatricopeptide repeat domain of mtRNAP exhibits exoribonuclease activity, which is required for the initiation of mtDNA replication in Drosophila. In this review, we explain how this exonuclease activity contributes to primer synthesis in strand-coupled mtDNA replication, and discuss how its regulation might co-ordinate mtDNA replication and transcription in both Drosophila and mammals.


Assuntos
Replicação do DNA , DNA Mitocondrial , Mitocôndrias , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Humanos , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Drosophila/genética , Drosophila/metabolismo , Exorribonucleases/metabolismo , Exorribonucleases/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
6.
Vet Sci ; 11(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38922027

RESUMO

Peste des petits ruminants (PPR) is an extremely transmissible viral disease caused by the PPR virus that impacts domestic small ruminants, namely sheep and goats. This study aimed to employ a methodical approach to evaluate the regional occurrence of PPR in small ruminants in Pakistan and the contributing factors that influence its prevalence. A thorough search was performed in various databases to identify published research articles between January 2004 and August 2023 on PPR in small ruminants in Pakistan. Articles were chosen based on specific inclusion and exclusion criteria. A total of 25 articles were selected from 1275 studies gathered from different databases. The overall pooled prevalence in Pakistan was calculated to be 51% (95% CI: 42-60), with heterogeneity I2 = 100%, τ2 = 0.0495, and p = 0. The data were summarized based on the division into five regions: Punjab, Baluchistan, KPK, Sindh, and GB and AJK. Among these, the pooled prevalence of PPR in Sindh was 61% (95% CI: 46-75), I2 = 100%, τ2 = 0.0485, and p = 0, while in KPK, it was 44% (95% CI: 26-63), I2 = 99%, τ2 = 0.0506, and p < 0.01. However, the prevalence of PPR in Baluchistan and Punjab was almost the same. Raising awareness, proper surveillance, and application of appropriate quarantine measures interprovincially and across borders must be maintained to contain the disease.

7.
Plant J ; 119(2): 895-915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753873

RESUMO

Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.


Assuntos
Bryopsida , Cloroplastos , Citosol , Mitocôndrias , Edição de RNA , RNA de Plantas , Cloroplastos/metabolismo , Cloroplastos/genética , Citosol/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citidina/metabolismo , Citidina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica de Plantas , Uridina/metabolismo , Uridina/genética
8.
Curr Top Dev Biol ; 159: 132-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729675

RESUMO

The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.


Assuntos
Crista Neural , Animais , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia , Humanos , Sensação/fisiologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/citologia , Vertebrados/embriologia , Vertebrados/fisiologia
10.
BMC Vet Res ; 20(1): 225, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790010

RESUMO

BACKGROUND: Peste des Petits Ruminants (PPR) is a world organization for animal health (WOAH) notifiable and economically important transboundary, highly communicable viral disease of small ruminants. PPR virus (PPRV) belongs to the genus Morbillivirus of the family Paramyxoviridae. AIM: The present cross-sectional epidemiological investigation was accomplished to estimate the apparent prevalence and identify the risk factors linked with peste des petits ruminants (PPR) in the previously neglected northern border regions of Pakistan. METHOD: A total of 1300 samples (serum = 328; swabs = 972) from 150 flocks/herds were compiled from sheep (n = 324), goats (n = 328), cattle (n = 324), and buffaloes (n = 324) during 2020-2021 and tested using ELISA for detection of viral antibody in sera or antigen in swabs. RESULTS: An overall apparent prevalence of 38.7% (504 samples) and an estimated true prevalence (calculated by the Rogan and Gladen estimator) of 41.0% (95% CI, 38.0-44 were recorded in the target regions. The highest apparent prevalence of 53.4% (85 samples) and the true prevalence of 57.0%, 95% Confidence Interval (CI) were documented in the Gilgit district and the lowest apparent prevalence of 53 (25.1%) and the true prevalence of 26.0%, 95% Confidence Interval (CI), 19.0-33.0) was reported in the Swat district. A questionnaire was designed to collect data about associated risk factors that were put into a univariable logistic regression to decrease the non-essential assumed risk dynamics with a P-value of 0.25. ArcGIS, 10.8.1 was used to design hotspot maps and MedCalc's online statistical software was used to calculate Odds Ratio (OR). Some of the risk factors significantly different (P < 0.05) in the multivariable logistic regression were flock/herd size, farming methods, nomadic animal movement, and outbreaks of PPR. The odds of large-sized flocks/herds were 1.7 (OR = 1.79; 95% Confidence Interval (CI) = 0.034-91.80%) times more likely to be positive than small-sized. The odds of transhumance and nomadic systems were 1.1 (OR = 1.15; 95% Confidence Interval (CI) = 0.022-58.64%) and 1.0 (OR = 1.02; 95% Confidence Interval (CI) = 0.020-51.97%) times more associated to be positive than sedentary and mixed farming systems, respectively. The odds of nomadic animal movement in the area was 0.7 (OR = 0.57; 95% Confidence Interval (CI) = 0.014-38.06%) times more associated to be positive than in areas where no nomadic movement was observed. In addition, the odds of an outbreak of PPR in the area were 1.0 (OR = 1.00; 95% Confidence Interval (CI) = 0.018-46.73%) times more associated to be positive than in areas where no outbreak of PPR was observed. CONCLUSIONS: It was concluded that many northern regions considered endemic for PPR, large and small ruminants are kept and reared together making numerous chances for virus transmission dynamic, so a big threats of disease spread exist in the region. The results of the present study would contribute to the global goal of controlling and eradicating PPR by 2030.


Assuntos
Doenças das Cabras , Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Animais , Paquistão/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/virologia , Fatores de Risco , Prevalência , Ovinos , Estudos Transversais , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Bovinos , Búfalos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Anticorpos Antivirais/sangue
12.
Trop Anim Health Prod ; 56(4): 127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625603

RESUMO

To effectively control and eradicate PPR, the comprehensive understanding of risk factors associated with PPR exposure is vital. Hence, this study investigated socioeconomic and other associated risk determinants for PPR exposure at flock level in sheep and goats in a non-vaccination programme implemented Madhya Pradesh state India. A total of 410 sheep and goat flocks, comprised mostly of goats but also some mixed flocks, were surveyed during 2016 using a multistage random sampling procedure. Further, 230 blood samples were also collected from the farmers-reported PPR affected flocks and sera were tested using c-ELISA to confirm PPR exposure. The primary data on socioeconomic factors, farm management factors, health status, vaccination details and other epidemiological risk factors were collected from flock owners and descriptive statistics, chi-square analysis and logistic regression models were fitted to identify the significant risk factors for PPR incidence. The farmer's education, flock size, rearing pattern, and awareness of PPR vaccination were found to be significant pre-disposing risk factors for PPR exposure in the flocks. Hence, the control and eradication strategy need to be designed comprehensively considering the key social factors like education and vaccination awareness along with other flock level risk factors to eradicate PPR by 2030 in consonance with the global plan.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Doenças dos Ovinos , Animais , Ovinos , Cabras , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/prevenção & controle , Fatores de Risco , Fatores Socioeconômicos , Índia/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia
13.
Plant J ; 119(1): 445-459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652016

RESUMO

The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.


Assuntos
Edição de RNA , RNA de Plantas , Edição de RNA/genética , RNA de Plantas/genética , Genoma Mitocondrial/genética , Transcriptoma , Uridina/metabolismo , Uridina/genética , Genoma de Cloroplastos , Filogenia , Mitocôndrias/genética , Mitocôndrias/metabolismo
14.
Plant Sci ; 344: 112101, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640972

RESUMO

Over the last decade, the composition of the C-to-U RNA editing complex in embryophyte organelles has turned out to be much more complex than first expected. While PPR proteins were initially thought to act alone, significant evidences have clearly depicted a sophisticated mechanism with numerous protein-protein interaction involving PPR and non-PPR proteins. Moreover, the identification of specific functional partnership between PPRs also suggests that, in addition to the highly specific PPRs directly involved in the RNA target recognition, non-RNA-specific ones are required. Although some of them, such as DYW1 and DYW2, were shown to be the catalytic domains of the editing complex, the molecular function of others, such as NUWA, remains elusive. It was suggested that they might stabilize the complex by acting as a scaffold. We here performed functional complementation of the crr28-2 mutant with truncated CRR28 proteins mimicking PPR without the catalytic domain and show that they exhibit a specific dependency to one of the catalytic proteins DYW1 or DYW2. Moreover, we also characterized the role of the PPR NUWA in the editing reaction and show that it likely acts as a scaffolding factor. NUWA is no longer required for efficient editing of the CLB19 editing sites once this RNA specific PPR is fused to the DYW catalytic domain of its partner DYW2. Altogether, our results strongly support a flexible, evolutive and resilient editing complex in which RNA binding activity, editing activity and stabilization/scaffolding function can be provided by one or more PPRs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Organelas/metabolismo , Organelas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo
15.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428393

RESUMO

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Assuntos
RNA Polimerases Dirigidas por DNA , Plastídeos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , Nicotiana/genética , Fotossíntese , Plastídeos/enzimologia
16.
Plant Commun ; 5(6): 100858, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38444162

RESUMO

Cotton is one of the most important textile fibers worldwide. As crucial agronomic traits, leaves play an essential role in the growth, disease resistance, fiber quality, and yield of cotton plants. Pentatricopeptide repeat (PPR) proteins are a large family of nuclear-encoded proteins involved in organellar or nuclear RNA metabolism. Using a virus-induced gene silencing assay, we found that cotton plants displayed variegated yellow leaf phenotypes with decreased chlorophyll content when expression of the PPR gene GhCTSF1 was silenced. GhCTSF1 encodes a chloroplast-localized protein that contains only two PPR motifs. Disruption of GhCTSF1 substantially reduces the splicing efficiency of rpoC1 intron 1 and ycf3 intron 2. Loss of function of the GhCTSF1 ortholog EMB1417 causes splicing defects in rpoC1 and ycf3-2, leading to impaired chloroplast structure and decreased photosynthetic rates in Arabidopsis. We also found that GhCTSF1 interacts with two splicing factors, GhCRS2 and GhWTF1. Defects in GhCRS2 and GhWTF1 severely affect intron splicing of rpoC1 and ycf3-2 in cotton, leading to defects in chloroplast development and a reduction in photosynthesis. Our results suggest that GhCTSF1 is specifically required for splicing rpoC1 and ycf3-2 in cooperation with GhCRS2 and GhWTF1.


Assuntos
Cloroplastos , Gossypium , Íntrons , Fotossíntese , Proteínas de Plantas , Splicing de RNA , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Íntrons/genética , Splicing de RNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotossíntese/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética
17.
J Integr Plant Biol ; 66(4): 645-659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450982

RESUMO

ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.


Assuntos
Cromossomos , Elementos de DNA Transponíveis , Humanos , Elementos de DNA Transponíveis/genética , Mutagênese Insercional/genética , Sequência de Bases , Mutação , Zea mays/genética
18.
Plant Mol Biol ; 114(2): 28, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485794

RESUMO

In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing in N. benthamiana to gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in the Nicotiana and Arabidopsis IPI1 orthologs. Virus-induced gene silencing of NbIPI1 led to defects in chloroplast ribosomal RNA processing and changes to stability of rpl16 transcripts, revealing conserved function with its maize ortholog. NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing in N. benthamiana chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , RNA de Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Zea mays/genética , Zea mays/metabolismo , RNA , Cloroplastos/genética , Cloroplastos/metabolismo
19.
Mol Breed ; 44(4): 29, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38549701

RESUMO

The chloroplast serves as the primary site of photosynthesis, and its development plays a crucial role in regulating plant growth and morphogenesis. The Pentatricopeptide Repeat Sequence (PPR) proteins constitute a vast protein family that function in the post-transcriptional modification of RNA within plant organelles. In this study, we characterized mutant of rice with pale green leaves (pgl3a). The chlorophyll content of pgl3a at the seedling stage was significantly reduced compared to the wild type (WT). Transmission electron microscopy (TEM) and quantitative PCR analysis revealed that pgl3a exhibited aberrant chloroplast development compared to the wild type (WT), accompanied by significant alterations in gene expression levels associated with chloroplast development and photosynthesis. The Mutmap analysis revealed that a single base deletionin the coding region of Os03g0136700 in pgl3a. By employing CRISPR/Cas9 mediated gene editing, two homozygous cr-pgl3a mutants were generated and exhibited a similar phenotype to pgl3a, thereby confirming that Os03g0136700 was responsible for pgl3a. Consequently, it was designated as OsPGL3A. OsPGL3A belongs to the DYW-type PPR protein family and is localized in chloroplasts. Furthermore, we demonstrated that the RNA editing efficiency of rps8-182 and rpoC2-4106, and the splicing efficiency of ycf3-1 were significantly decreased in pgl3a mutants compared to WT. Collectively, these results indicate that OsPGL3A plays a crucial role in chloroplast development by regulating the editing and splicing of chloroplast genes in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01468-7.

20.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542518

RESUMO

Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...