Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.000
Filtrar
1.
J Cell Physiol ; : e31435, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351825

RESUMO

Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39376081

RESUMO

INTRODUCTION: Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED: This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION: Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.

4.
Acta Neuropathol Commun ; 12(1): 163, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39396065

RESUMO

Tauopathies, including Alzheimer's disease (AD), are a class of neurodegenerative diseases characterized by the presence of insoluble tau inclusions. Tau phosphorylation has traditionally been viewed as the dominant post-translational modification (PTM) controlling tau function and pathogenesis in tauopathies. However, we and others have identified tau acetylation as a primary PTM regulating both normal tau function as well as abnormal pathogenic features including aggregation. Prior work showed robust tau acetylation in aggregation hotspots located within the 2nd and 3rd repeat regions of tau (residues K280 and K311) in tauopathy brains, including AD, compared to non-tauopathy controls. By screening thousands of hybridoma clones, we generated site-specific and modification-specific monoclonal antibodies targeting acetylated tau at residues K280 or K311. To validate these antibodies in a bona fide neuronal system, we targeted the acetyltransferase CBP to the cytoplasm of neurons to promote tau acetylation. Several antibody clones specifically detected CBP-acetylated tau and co-localized with ac-tau in neurons. Additionally, our lead optimal anti-acetylated-tau monoclonal antibodies detected robust tau pathology in tangles and neuritic plaques of human AD brains. Given the now emerging interest in acetylated tau as critical regulator of tau functions, these sensitive and highly specific tools will allow us to further unravel the tau PTM code and, importantly, could be deployed as diagnostic or disease-modifying agents.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais , Proteínas tau , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/imunologia , Proteínas tau/metabolismo , Proteínas tau/imunologia , Humanos , Acetilação , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Feminino , Processamento de Proteína Pós-Traducional , Neurônios/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais , Idoso , Masculino
6.
J Gastrointest Oncol ; 15(4): 1592-1612, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279963

RESUMO

Background: Phosphorylation is a critical post-translational modification (PTM) type contributing to colorectal cancer (CRC). The study aimed to construct a nomogram model to predict colon adenocarcinoma (COAD) prognosis based on PTM signatures. Methods: The Cancer Genome Atlas (TCGA) database has been indexed for COAD patients' RNA sequencing, proteomic data, and clinical details. To find potential PTM prognostic signatures, the least absolute shrinkage and selection operator (LASSO) was deployed. Model validation procedures included the use of the Kaplan-Meier (K-M) method, the receiver operating characteristic (ROC) curve, the area under the curve (AUC), and the decision curve analysis (DCA). Additionally, biological enrichment, tumor immune microenvironment, and chemotherapy were also assessed. To validate the model, CRC cells were used in in vitro experiments using western blotting, proliferation assay, colony formation assay, and flow cytometry. Results: The LASSO regression analysis identified 8 PTM sites. Based on the median PTM score, patients were classified into low- and high-risk groups. K-M results showed that high-risk patients had worse prognoses (P<0.001). Our model demonstrated powerful effectiveness and predictive value (TCGA whole group: 1-year AUC =0.611, 2-year AUC =0.574, 3-year AUC =0.627). Additionally, high-risk CRC patients were enriched in KRAS signaling pathways (P=0.01), possessed more robust immune escape capacity (P=0.001, and induced cell-cycle arrest of CRC cells (P<0.01). Conclusions: We established and validated a novel nomogram model related to PTM that can predict prognosis and guide the treatment of COAD.

7.
mBio ; : e0238724, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254316

RESUMO

The microbiome plays a vital role in human health, with changes in its composition impacting various aspects of the body. Posttranslational modification (PTM) regulates protein activity by attaching chemical groups to amino acids in an enzymatic or non-enzymatic manner. PTMs offer fast and dynamic regulation of protein expression and can be influenced by specific dietary components that induce PTM events in gut microbiomes and their hosts. PTMs on microbiome proteins have been found to contribute to host-microbe interactions. For example, in Escherichia coli, S-sulfhydration of tryptophanase regulates uremic toxin production and chronic kidney disease in mice. On a broader microbial scale, the microbiomes of patients with inflammatory bowel disease exhibit distinct PTM patterns in their metaproteomes. Moreover, pathogens and commensals can alter host PTM profiles through protein secretion and diet-regulated metabolic shifts. The emerging field of metaPTMomics focuses on understanding PTM profiles in the microbiota, their association with lifestyle factors like diet, and their functional effects on host-microbe interactions.

8.
Biomolecules ; 14(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39334878

RESUMO

The dual methyltransferase methyltransferase-like protein 13, also referred to as METTL13, or formerly known as FEAT (faintly expressed in healthy tissues, aberrantly overexpressed in tumors), has garnered attention as a significant enzyme in various cancer types, as evidenced by prior literature reviews. Recent studies have shed light on new potential roles for METTL13, hinting at its promise as a therapeutic target. This review aims to delve into the multifaceted biology of METTL13, elucidating its proposed mechanisms of action, regulatory pathways, and its implications in disease states, as supported by the current body of literature. Furthermore, the review will highlight emerging trends and gaps in our understanding of METTL13, paving the way for future research efforts. By contextualizing METTL13 within the broader landscape of cancer biology and therapeutics, this study serves as an introductory guide to METTL13, aiming to provide readers with a thorough understanding of its role in disease phenotypes.


Assuntos
Metiltransferases , Neoplasias , Animais , Humanos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimologia
9.
Plant Sci ; 349: 112269, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313003

RESUMO

NADP-dependent isocitrate dehydrogenase (NADP-ICDH) is one of the main sources of cellular reductant capacity in the form of NADPH. Although there is significant knowledge about the relevance of this enzyme during some physiological and stress processes, the available information about its involvement in fruit ripening is scarce. Using sweet green pepper (Capsicum annuum L.) fruits, a 50-75 % ammonium-sulfate-enriched protein fraction containing the NADP-ICDH activity allowed its biochemical characterization. The enzyme displayed a typical Michaelis-Menten kinetics and exhibited Vmax and Km values of 97 µUnits and 78 µM for isocitrate, and 92 µUnits and 46 µM for NADP+. Three NADP-ICDH isozymes were identified by non-denaturing PAGE designated as NADP-ICDH I to III, each representing 33 %, 24 %, and 43 %, respectively, of the total activity. Based on our previous transcriptome (RNA-Seq), three CaICDH genes (CaNADP-ICDH1, CaNADP-ICDH2, and CaNADP-ICDH3) were identified in sweet pepper fruits encoding isozymes potentially distributed in the cytosol, cytosol/mitochondrion, and peroxisome, according to their percentage of identity with the Arabidopsis isozymes. The time-course expression analysis of these genes during different fruit ripening stages including green immature (G), breaking point (BP), and red ripe (R), and in fruits subjected to nitric oxide (NO) treatments, showed dissimilar expression patterns. During ripening from green to red fruits, CaNADP-ICDH1 and CaNADP-ICDH2 were upregulated but were negatively affected by NO; however, CaNADP-ICDH3 was downregulated during ripening but unaffected by NO treatment. Furthermore, during ripening, the NADP-ICDH activity increased in red ripe fruits whereas the NO gas treatment produced a significant inhibition. These findings provide, to our knowledge, the first characterization of the NADP-ICDH family in this non-climacteric fruit and suggest that NADP-ICDH must play an important role in maintaining the supply of NADPH during pepper fruit ripening and that NO partially modulates this NADPH-generating system.

10.
J Biol Chem ; 300(10): 107770, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270823

RESUMO

Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.

11.
J Proteome Res ; 23(10): 4242-4253, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39284794

RESUMO

The influence of data evaluation parameters on qualitative and quantitative results of untargeted shotgun profiling of enzymatic and nonenzymatic post-translational modifications (PTMs) was investigated in a model of bovine whey protein α-lactalbumin heated with lactose. Based on the same raw data, individual adjustments to the protein database and enzyme settings of PEAKS studio software increased the identification rate from 27 unmodified peptides to 48 and from 322 peptides in total to 535. The qualitative and quantitative reproducibility was also assessed based on 18 measurements of one sample across three batches. A total of 570 peptides were detected. While 89 peptides were identified in all measurements, the majority of peptides (161) were detected only once and mostly based on nonindicative spectra. The reproducibility of label-free quantification (LFQ) in six measurements of the same sample was similar after processing the data by either the PTM algorithm or the LFQ algorithm. In both cases, about one-third of the peptides showed a coefficient of variation of above 20%. However, the LFQ algorithm increased the number of quantified peptides from 75 to 179. Data are available at the PRIDE Archive with the data set identifier PXD050363.


Assuntos
Algoritmos , Processamento de Proteína Pós-Traducional , Software , Animais , Reprodutibilidade dos Testes , Bovinos , Cromatografia Líquida/métodos , Proteômica/métodos , Lactalbumina/química , Lactalbumina/metabolismo , Peptídeos/química , Peptídeos/análise , Peptídeos/metabolismo , Bases de Dados de Proteínas
12.
Int J Mol Sci ; 25(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39337424

RESUMO

Although arginine methylation (R-methylation) is one of the most important post-translational modifications (PTMs) conserved in eukaryotes, it has not been studied to the same extent as phosphorylation and ubiquitylation. Technical constraints, which are in the process of being resolved, may partly explain this lack of success. Our knowledge of R-methylation has recently evolved considerably, particularly in metazoans, where misregulation of the enzymes that deposit this PTM is implicated in several diseases and cancers. Indeed, the roles of R-methylation have been highlighted through the analyses of the main actors of this pathway: the PRMT writer enzymes, the TUDOR reader proteins, and potential "eraser" enzymes. In contrast, R-methylation has been much less studied in plants. Even so, it has been shown that R-methylation in plants, as in animals, regulates housekeeping processes such as transcription, RNA silencing, splicing, ribosome biogenesis, and DNA damage. R-methylation has recently been highlighted in the regulation of membrane-free organelles in animals, but this role has not yet been demonstrated in plants. The identified R-met targets modulate key biological processes such as flowering, shoot and root development, and responses to abiotic and biotic stresses. Finally, arginine demethylases activity has mostly been identified in vitro, so further studies are needed to unravel the mechanism of arginine demethylation.


Assuntos
Arginina , Desenvolvimento Vegetal , Plantas , Processamento de Proteína Pós-Traducional , Metilação , Desenvolvimento Vegetal/genética , Plantas/metabolismo , Plantas/genética , Arginina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
13.
J Chromatogr A ; 1736: 465368, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39298927

RESUMO

Histone post-translational modifications (PTMs) are critical epigenetic regulatory factors. Histone PTMs are highly dynamic and complicated, encompassing over 30 structurally diverse modifications across nearly 180 amino acid residues, which generated extensive information regarding histone marks. In proteomics-based characterization of histone PTMs, chemical derivatization and antibody-based affinity enrichment were frequently utilized to improve the identification depth. However, chemical derivatization suffered from the occurrence of side reactions, and antibody-based affinity enrichment focused on specific PTM types of interest. In this research, we developed a multi-step fractionation strategy for comprehensively unbiased detection of histone PTM sites. By combining protein-level fractionation with peptide-level alkaline and acid phase fractionation, we developed the Multidimensional Fractionation based Histone Mark Identification Technology (MudFIT) and increased PTM identification to a total of 264 histone PTM sites. To the best of our knowledge, this strategy achieved the most comprehensive characterization of histone PTM sites in a single proteomics study. Using the same starting amount of sample, MudFIT identified more Kac sites and Kac peptides than those in antibody-based acetylated peptide enrichment. Moreover, in addition to well-studied histone marks, we discovered 36 potential new histone PTM sites including H2BK116bu, H4R45me2, H1K63pr, and uncovered unknown histone PTM types like aminoadipic on lysine and nitrosylation on tyrosine. Our data provided a method and resource for in-depth characterization of histone PTM sites, facilitating further biological understanding of histone marks.

14.
Front Mol Neurosci ; 17: 1399965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39169951

RESUMO

Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid ß (Aß) and downstream Aß pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.

15.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126078

RESUMO

Epigenetic mechanisms, including histone post-translational modifications (PTMs), play a critical role in regulating pain perception and the pathophysiology of burn injury. However, the epigenetic regulation and molecular mechanisms underlying burn injury-induced pain remain insufficiently explored. Spinal dynorphinergic (Pdyn) neurons contribute to heat hyperalgesia induced by severe scalding-type burn injury through p-S10H3-dependent signaling. Beyond p-S10H3, burn injury may impact various other histone H3 PTMs. Double immunofluorescent staining and histone H3 protein analyses demonstrated significant hypermethylation at H3K4me1 and H3K4me3 sites and hyperphosphorylation at S10H3 within the spinal cord. By analyzing Pdyn neurons in the spinal dorsal horn, we found evidence of chromatin activation with a significant elevation in p-S10H3 immunoreactivity. We used RNA-seq analysis to compare the effects of burn injury and formalin-induced inflammatory pain on spinal cord transcriptomic profiles. We identified 98 DEGs for burn injury and 86 DEGs for formalin-induced inflammatory pain. A limited number of shared differentially expressed genes (DEGs) suggest distinct central pain processing mechanisms between burn injury and formalin models. KEGG pathway analysis supported this divergence, with burn injury activating Wnt signaling. This study enhances our understanding of burn injury mechanisms and uncovers converging and diverging pathways in pain models with different origins.


Assuntos
Queimaduras , Epigênese Genética , Histonas , Nociceptividade , Medula Espinal , Animais , Queimaduras/complicações , Queimaduras/metabolismo , Queimaduras/genética , Camundongos , Histonas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Modelos Animais de Doenças
16.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201563

RESUMO

Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.


Assuntos
Óxido Nítrico , Peroxissomos , Processamento de Proteína Pós-Traducional , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo
17.
Front Mol Biosci ; 11: 1422034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044841

RESUMO

Upon infection of host cells the Legionella pneumophila bacterium releases a multitude of effector enzymes into the host's cytoplasm that manipulate cellular host pathways, including the host-ubiquitination pathways. The effectors belonging to the SidE-family are involved in non-canonical phosphoribosyl serine ubiquitination (PR-ubiquitination) of host substrate proteins. This results in the recruitment of ER-remodeling proteins and the formation of a Legionella-containing vacuole which is crucial in the onset of legionnaires disease. PR-ubiquitination is a dynamic process reversed by other Legionella effectors called Dups. During PR-Ubiquitin phosphodiester hydrolysis Dups form a covalent intermediate with the phosphoribosyl ubiquitylated protein using its active site His67 residue. We envisioned that covalent probes to target Legionella effectors could be of value to study these effectors and contribute to deciphering the complex biology of Legionella infection. Hence we effectively installed a photo-activatable pyridinium warhead on the 5'-OH of triazole-linked ribosylated ubiquitin allowing crosslinking of the probe to the catalytic histidine residues in Legionella SidE or Dup enzymes. In vitro tests on recombinantly expressed DupA and SdeAPDE revealed that the probe was able to capture the enzymes covalently upon photo-activation.

18.
Methods Mol Biol ; 2836: 37-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995534

RESUMO

Tandem mass spectrometry (MS/MS) facilitates the rapid identification of posttranslational modifications (PTMs), which play a pivotal role in regulating numerous biological processes. This chapter explores recent advancements that expand the types of detectable PTMs and enhance the speed of the PTM searches. We also delve into computational challenges associated with searching for a multitude of PTMs simultaneously. The latter section introduces an automated procedure to identify an extensive range of PTMs using MODplus, a free PTM analysis software tool. We guide the reader through the preparation of the modification search, the determination of optional search parameters, the execution of the search, and the analysis of results, exemplified by a case study using specific MS/MS dataset.


Assuntos
Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Humanos , Proteômica/métodos , Bases de Dados de Proteínas , Biologia Computacional/métodos , Proteínas/química
19.
Cell Mol Neurobiol ; 44(1): 53, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960968

RESUMO

Parkinsons disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and alpha-synuclein aggregation. This comprehensive review examines the intricate role of post-translational modifications (PTMs) in PD pathogenesis, focusing on DNA methylation, histone modifications, phosphorylation, SUMOylation, and ubiquitination. Targeted PTM modulation, particularly in key proteins like Parkin, DJ1, and PINK1, emerges as a promising therapeutic strategy for mitigating dopaminergic degeneration in PD. Dysregulated PTMs significantly contribute to the accumulation of toxic protein aggregates and dopaminergic neuronal dysfunction observed in PD. Targeting PTMs, including epigenetic strategies, addressing aberrant phosphorylation events, and modulating SUMOylation processes, provides potential avenues for intervention. The ubiquitin-proteasome system, governed by enzymes like Parkin and Nedd4, offers potential targets for clearing misfolded proteins and developing disease-modifying interventions. Compounds like ginkgolic acid, SUMO E1 enzyme inhibitors, and natural compounds like Indole-3-carbinol illustrate the feasibility of modulating PTMs for therapeutic purposes in PD. This review underscores the therapeutic potential of PTM-targeted interventions in modulating PD-related pathways, emphasizing the need for further research in this promising area of Parkinsons disease therapeutics.


Assuntos
Doença de Parkinson , Processamento de Proteína Pós-Traducional , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais
20.
Protein J ; 43(4): 639-655, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39068633

RESUMO

Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S-NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S-NO proteins. This article briefly reviews the progress in S-NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S-NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.


Assuntos
Óxido Nítrico , Processamento de Proteína Pós-Traducional , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Humanos , Proteínas/química , Proteínas/metabolismo , Animais , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA