Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.203
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954684

RESUMO

Palladium (Pd)-transition metal alloys have the potential to regulate the intermediate surface adsorption strength in oxygen reduction reactions (ORR), making them a promising substitute for platinum-based catalysts. Nonetheless, prolonged electrochemical cycling can lead to the depletion of transition metals, resulting in structural degradation and poor durability. Herein, the synthesis of alloy catalysts (Pd25%Te75%) containing Pd and the metalloid tellurium (Te) through a one-step reduction method is reported. Characterizations of powder X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy demonstrated both uniform dispersion and strong binding force of elements within the PdTe alloy, along with providing crystallographic details of associated compounds. Based on density functional theory calculations, PdTe had a more negative d-band center than that of pure Pd, which reduces the adsorption capacity between active sites and intermediates in the ORR, and therefore enhances reaction kinetics. The Pd25%Te75% exhibited excellent ORR activity, and its onset and half-wave potentials were ∼0.98 and ∼0.90 V, respectively, at 1600 rpm within the O2-saturated 1.0 M KOH. Significantly, accelerated durability tests achieved exceptional stability, and half-wave potential just decayed by 4 mV after 30000 consecutive cycles. Moreover, this study aims to promote the preparation of Pd and metalloid alloys for other energy conversion applications.

2.
Adv Sci (Weinh) ; : e2403470, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970207

RESUMO

A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity. DFT study is conducted to probe the reaction pathway and the origin of the enantioselectivity, which revealed that the stereoinduction arises from the weak interaction between the aromatic ring of the substrate fragment and naphthyl group in the ligand.

3.
Angew Chem Int Ed Engl ; : e202409366, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979942

RESUMO

In this work, we describe an efficient and modular method for enantiodivergent accessing P(V)-stereogenic molecules by utilizing the catalytic atroposelective Catellani-type C-H arylation/desymmetric intramolecular N-arylation cascade reaction. The enantioselectivity of this protocol was proved to be tuned by the polarity of the solvent, thus providing a wide range of both chiral P(V)-stereogenic enantiomers in moderate to good yields with good to excellent enantiomeric excesses. Noteworthy is that the strategy developed herein represents an unprecedented example of solvent-dictated inversion of the enantioselectivity of P(V)-stereogenic compounds.

4.
Chempluschem ; : e202400379, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980081

RESUMO

Cyrene, a renewable, non-toxic substance having negligible vapor pressure, even at high temperatures, was proposed as a reaction medium for homogeneous Pd-catalyzed Heck-coupling reactions. It was first characterized by its temperature-dependent physicochemical properties, i.e., vapor pressure, density, surface tension, heat capacity, and viscosity, the key parameters of its reaction and process chemistry. Its refractive indices in the function of temperature were also determined. Hereafter, the effect of reaction parameters (Pd source, nature of the base, the water content of the reaction mixture, leaving group (-I, -Br, -Cl, and -OTf of aromatic substrates) on Pd-catalyzed Heck-coupling reaction was investigated using iodobenzene and styrene as model substrates. Subsequently, 4-substituted iodobenzene and styrene derivatives were applied to investigate the effect of electronic parameters on the reaction efficiency and functional group tolerance. To demonstrate the applicability of the system, thirteen stilbene derivatives were isolated with good to high yields and purity (> 95%) using 0.2 mol% of Pd, 1.5 eq. of Et3N as a base, in 1 mL of Cyrene for 2 h at 100 °C.

5.
Health Care Sci ; 3(3): 181-202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947365

RESUMO

The exploration of newer antibacterial strategies is driven by antibiotic-resistant microbes that cause serious public health issues. In recent years, nanoscale materials have developed as an alternative method to fight infections. Despite the fact that many nanomaterials have been discovered to be harmful, numerous researchers have shown a keen interest in nanoparticles (NPs) made of noble metals like silver, gold and platinum. To make environmentally safe NPs from plants, green chemistry and nanotechnology have been combined to address the issue of toxicity. The study of bimetallic nanoparticles (BNPs) has increased tremendously in the past 10 years. The production of BNPs mediated by natural extracts is straightforward, low cost and environmentally friendly. Due to their low toxicity, safety and biological stability, noble BNPs with silver, gold, platinum and palladium have the potential to be used in biomedical applications. They have a significant impact on human health and are used in medicine and pharmacy due to their biological characteristics, which include catalytic, antioxidant, antibacterial, antidiabetic, anticancer, hepatoprotective and regenerative activity.

6.
Angew Chem Int Ed Engl ; : e202410646, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972838

RESUMO

Ethylene dimerization is an industrial process that is currently carried out using homogeneous catalysts. Here we present a highly active heterogeneous catalyst containing minute amounts of atomically dispersed Pd. It requires no co-catalyst(s) or activator(s) and significantly outperforms previously reported catalysts tested under similar reaction conditions. The selectivity to C4- and C6-hydrocarbons was about 80% and 10% at 42% ethylene conversion at 200°C using an industrially relevant feed containing 50 vol% ethylene, respectively. Our kinetic and catalyst characterization experiments complemented by density functional theory calculations provide molecular insights into the local environment of isolated Pd(II)Ox species and their role in achieving high activity in the target reaction. When the developed catalyst was rationally integrated with a Mo-containing olefin metathesis catalyst in the same reactor, the formed butenes reacted with ethylene to propylene with a selectivity of 98% at about 24% ethylene conversion.

7.
Adv Mater ; : e2404291, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975670

RESUMO

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

8.
Angew Chem Int Ed Engl ; : e202412179, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990010

RESUMO

Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.

9.
Beilstein J Nanotechnol ; 15: 808-816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979525

RESUMO

Janus-type nanoparticles are important because of their ability to combine distinct properties and functionalities in a single particle, making them extremely versatile and valuable in various scientific, technological, and industrial applications. In this work, bimetallic silver-palladium Janus nanoparticles were obtained for the first time using the inert gas condensation technique. In order to achieve this, an original synthesis equipment built by Mantis Ltd. was modified by the inclusion of an additional magnetron in a second chamber, which allowed us to use two monometallic targets to sputter the two metals independently. With this arrangement, we could find appropriate settings at room temperature to promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis, confirmed the presence of Janus-type nanostructures. Results of molecular dynamics and TEM simulations show that the differences between the crystalline structures of the Pd and Ag regions observed in the TEM micrographs can be explained by small mismatches in the orientations of the two regions of the particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle.

10.
Angew Chem Int Ed Engl ; : e202410597, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986016

RESUMO

The development of all kinds of covalent drugs had a major impact on the improvement of the human health system. Covalent binding to target proteins is achieved by so-called electrophilic warheads, which are incorporated in the respective drug molecule. In the last decade, specifically acrylamides emerged as attractive warheads in covalent drug design. Herein, a straightforward palladium-catalyzed hydroaminocarbonylation of acetylene has been developed, allowing a modular and diverse synthesis of bio-active acrylamides. This general protocol features high atom efficiency, wide functional group compatibility, high chemoselectivity and proceeds additive free under mild reaction conditions. The synthetic utility of this protocol is showcased in the synthesis of ibrutinib, osimertinib, and other bio-active compound derivatives.

11.
Adv Sci (Weinh) ; : e2404266, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986026

RESUMO

Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.

12.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930248

RESUMO

The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction's catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition metal alloys in fuel cells is significantly constrained by their inadequate long-term durability due to the propensity of transition metals to leach. In this study, a nonmetallic doping strategy was devised and implemented to produce a Pd catalyst doped with P that exhibited exceptional durability towards ORRs. Pd3P0.95 with an average size of 6.41 nm was synthesized by the heat-treatment phosphorization of Pd nanoparticles followed by acid etching. After P-doping, the size of the Pd nanoparticles increased from 5.37 nm to 6.41 nm, and the initial mass activity (MA) of Pd3P0.95/NC reached 0.175 A mgPd-1 at 0.9 V, slightly lower than that of Pd/C. However, after 40,000 cycles of accelerated durability testing, instead of decreasing, the MA of Pd3P0.95/NC increased by 6.3% while the MA loss of Pd/C was 38.3%. The durability was primarily ascribed to the electronic structure effect and the aggregation resistance of the Pd nanoparticles. This research also establishes a foundation for the development of Pd-based ORR catalysts and offers a direction for the future advancement of catalysts designed for practical applications in AFCs.

13.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930982

RESUMO

1,2-Dihydroisoquinolines are important compounds due to their biological and medicinal activities, and numerous approaches to their synthesis have been reported. Recently, we reported a facile synthesis of trisubstituted allenamides via N-acetylation followed by DBU-promoted isomerization, where various substituted allenamides were conveniently synthesized from readily available propargylamines with high efficiency. In light of this research background, we focused on the utility of this methodology for the synthesis of substituted 1,2-dihydroisoquinolines. In this study, a palladium-catalyzed cascade cyclization-coupling of trisubstituted allenamides containing a bromoaryl moiety with arylboronic acids is described. When N-acetyl diphenyl-substituted trisubstituted allenamide and phenylboronic acid were treated with 10 mol% of Pd(OAc)2, 20 mol% of P(o-tolyl)3, and 5 equivalents of NaOH in dioxane/H2O (4/1) at 80 °C, the reaction proceeded to afford a substituted 1,2-dihydroisoquinoline. The reaction proceeded via intramolecular cyclization, followed by transmetallation with the arylboronic acid of the resulting allylpalladium intermediate. A variety of highly substituted 1,2-dihydroisoquinolines were concisely obtained using this methodology because the allenamides, as reaction substrates, were prepared from readily available propargylamines in one step.

14.
ACS Catal ; 14(9): 7127-7135, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38911468

RESUMO

We describe a detailed investigation into why bulky ligands-those that enable catalysis at "12e -" Pd0-tend to promote overfunctionalization during Pd-catalyzed cross-couplings of dihalogenated substrates. After one cross-coupling event takes place, PdL initially remains coordinated to the π system of the nascent product. Selectivity for mono- vs. difunctionalization arises from the relative rates of π-decomplexation versus a second oxidative addition. Under the Suzuki coupling conditions in this work, direct dissociation of 12e - PdL from the π-complex cannot outcompete oxidative addition. Instead, Pd must be displaced from the π-complex as 14e - PdL(L') by a second incoming ligand L'. The incoming ligand is another molecule of dichloroarene if the reaction conditions do not include π-coordinating solvents or additives. More overfunctionalization tends to result when increased ligand or substrate sterics raises the energy of the bimolecular transition state for separating 14e - PdL(L') from the mono-cross-coupled product. This work has practical implications for optimizing selectivity in cross-couplings involving multiple halogens. For example, we demonstrate that small coordinating additives like DMSO can largely suppress overfunctionalization and that precatalyst structure can also impact selectivity.

15.
ACS Sens ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918891

RESUMO

Exposure to mustard gas can cause damage or death to human beings, depending on the concentration and duration. Thus, developing high-performance mustard-gas sensors is highly needed for early warning. Herein, ultrathin WO3 nanosheet-supported Pd nanoparticles hybrids (WO3 NSs/Pd) are prepared as chemiresistive sulfur mustard simulant (e.g., 2-chloroethyl ethyl sulfide, 2-CEES) gas sensors. As a result, the optimal WO3 NSs/Pd-2 (2 wt % of Pd)-based sensor exhibits a high response of 8.5 and a rapid response/recovery time of 9/92 s toward 700 ppb 2-CEES at 260 °C. The detection limit could be as low as 15 ppb with a response of 1.4. Moreover, WO3 NSs/Pd-2 shows good repeatability, 30-day operating stability, and good selectivity. In WO3 NSs/Pd-2, ultrathin WO3 NSs are rich in oxygen vacancies, offer more sites to adsorb oxygen species, and make their size close to or even within the thickness of the so-called electron depletion layer, thus inducing a large resistance change (response). Moreover, strong metal-support interactions (SMSIs) between WO3 NSs and Pd nanoparticles enhance the catalytic redox reaction performance, thereby achieving a superior sensing performance toward 2-CEES. These findings in this work provide a new approach to optimize the sensing performance of a chemiresistive sensor by constructing SMSIs in ultrathin metal oxides.

16.
Nanomaterials (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921870

RESUMO

We explored two methods for synthesizing Pd nanoparticles using three different carbide-derived carbon (CDC) support materials, one of which was nitrogen-doped. These materials were studied for oxygen reduction reaction (ORR) in 0.1 M KOH solution, and the resulting CDC/Pd catalysts were characterized using TEM, XRD, and XPS. The citrate method and the polyol method using polyvinylpyrrolidone (PVP) as a capping agent were employed to elucidate the impact of the support material on the final catalyst. The N-doping of the CDC material resulted in smaller Pd nanoparticles, but only in the case of the citrate method. This suggests that the influence of support is weaker when using the polyol method. The citrate method with CDC1, which is predominantly microporous, led to a higher degree of agglomeration and formation of larger particles in comparison to supports, which possessed a higher degree of mesoporosity. We achieved smaller Pd particle sizes using citrate and NaBH4 compared to the ethylene glycol PVP method. Pd deposited on CDC2 and CDC3 supports showed similar specific activity (SA), suggesting that the N-doping did not significantly influence the ORR process. The highest SA value was observed for CDC1/Pd_Cit, which could be attributed to the formation of larger Pd particles and agglomerates.

17.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921900

RESUMO

A composite material of tungsten carbide and mesoporous carbon was synthesized by the sol-gel polycondensation of resorcinol and formaldehyde, using cetyltrimethylammonium bromide as a surfactant and Ludox HS-40 as a porogen, and served as a support for Pd-based electrodes. Phosphorus-modified Pd particles were deposited onto the support using an NH3-mediated polyol reduction method facilitated by sodium hypophosphite. Remarkably small Pd nanoparticles with a diameter of ca. 4 nm were formed by the phosphorus modification. Owing to the high dispersion of Pd and its strong interaction with tungsten carbide, the Pd nanoparticles embedded in the tungsten carbide/mesoporous carbon composite exhibited a hydrogen oxidation activity approximately twice as high as that of the commercial Pt/C catalyst under the anode reaction conditions of proton exchange membrane fuel cells.

18.
ACS Appl Mater Interfaces ; 16(26): 33416-33427, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904246

RESUMO

As a novel electrochemical energy conversion device, direct ethanol fuel cells are currently encountering two significant challenges: CO poisoning and the difficulty of C-C bond cleavage in ethanol. In this work, an amorphous PdS nanowires/ultrafine IrMnOx bimetallic oxides (denoted as a-PdS/IrMnOx NWs) catalyst with abundant oxide/metal (crystalline/amorphous) inverse heterogeneous interfaces was synthesized via a hydrothermal process succeeded by a nonthermal air-plasma treatment. This unique interfacial electronic structure along with the incorporation of oxyphilic metal has resulted in a significant enhancement in the electrocatalytic performance of a-PdS/IrMnOx NWs toward the ethanol oxidation reaction, achieving current densities of 12.45 mA·cm-2 and 3.68 A·mgPd-1. Moreover, the C1 pathway selectivity for ethanol oxidation has been elevated to 47%, exceeding that of other as-prepared Pd-based counterparts and commercial Pd/C catalysts. Density functional theory calculations have validated the findings that the decoration of IrMn species onto the amorphous PdS surface has induced a charge redistribution in the interface region. The redistribution of surface charges on the a-PdS/IrMnOx NWs catalyst results in a significant decrease in the activation energy required for C-C bond cleavage and a notable weakening of the CO binding strength at the Pd active sites. Consequently, it enhanced both the EOR C1 pathway selectivity and CO poisoning resistance to the a-PdS/IrMnOx NWs catalyst.

19.
Adv Sci (Weinh) ; : e2402170, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885373

RESUMO

Oxazocines are key structural intermediates in the synthesis of natural products and pharmaceutical molecules. However, the synthesis of oxazocines especially in a highly enantioselective manner, is a long-standing formidable challenge due to unfavorable energetics involved in cyclization. Herein, a series of new PNP-Ligand P-chiral stereocenter is first designed and synthesized, called MQ-Phos, and successfully applied it in the Pd-catalyzed enantioselective higher-order formal [4+4]-cycloaddition of α, ß-unsaturated imines with 2-(hydroxymethyl)-1-arylallyl carbonates. The reaction features mild conditions, excellent regio- and enantiocontrol and a broad substrate scope (54 examples). Various medium-sized rings can be afforded in moderate to excellent yields (up to 92%) and excellent enantioselectivity (up to 99% ee). The newly developed MQ-Phos is critical for synthesis of the medium-sized ring in excellent catalytic reactivity and enantioselectivity.

20.
Angew Chem Int Ed Engl ; : e202405520, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896428

RESUMO

Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...