Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Euro Surveill ; 29(28)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994600

RESUMO

We investigated a variant of measles virus that encodes three mismatches to the reverse priming site for a widely used diagnostic real-time RT-PCR assay; reduction of sensitivity was hypothesised. We examined performance of the assay in context of the variant using in silico data, synthetic RNA templates and clinical specimens. Sensitivity was reduced observed at low copy numbers for templates encoding the variant sequence. We designed and tested an alternate priming strategy, rescuing the sensitivity of the assay.


Assuntos
Vírus do Sarampo , Sarampo , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Humanos , Sarampo/diagnóstico , Sarampo/virologia , Vírus do Sarampo/genética , Vírus do Sarampo/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética
2.
Proc Natl Acad Sci U S A ; 121(24): e2403389121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833471

RESUMO

Cell-cell fusion mediated by most paramyxovirus requires fusion protein (F) and attachment protein (H, HN, or G). The F protein is proteolytic cleaved to be fusogenically active. J paramyxovirus (JPV) has a unique feature in the family Paramyxoviridae: It encodes an integral membrane protein, syncytial protein (SP, formerly known as transmembrane protein, TM), which is essential in JPV-promoted cell-cell fusion (i.e., syncytial). In this study, we report that cleavage of SP is essential for its syncytial-promoting activity. We have identified the cleavage site of SP at amino acid residues 172 to 175, LKTG, and deletion of the "LKTG" residues abolished SP protein cleavage and its ability to promote cell-cell fusion. Replacing the cleavage site LKTG with a factor Xa protease cleavage site allows cleavage of the SP with factor Xa protease and restores its ability to promote cell-cell fusion. Furthermore, results from a hemifusion assay indicate that cleavage of SP plays an important role in the progression from the intermediate hemifusion state to a complete fusion. This work indicates that SP has many characteristics of a fusion protein. We propose that SP is likely a cell-cell fusion-promoting protein.


Assuntos
Fusão Celular , Proteínas Virais de Fusão , Animais , Proteínas Virais de Fusão/metabolismo , Chlorocebus aethiops , Proteólise , Células Vero , Internalização do Vírus , Fator Xa/metabolismo , Humanos , Linhagem Celular
3.
Virol J ; 21(1): 146, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918816

RESUMO

The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.


Assuntos
Genoma Viral , Filogenia , Roedores , Animais , China , Roedores/virologia , Animais Selvagens/virologia , Paramyxovirinae/genética , Paramyxovirinae/classificação , Paramyxovirinae/isolamento & purificação , RNA Viral/genética , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Reservatórios de Doenças/virologia , Análise de Sequência de DNA
4.
J Infect Dis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842160

RESUMO

BACKGROUND: Nipah virus is an emerging zoonotic virus that causes severe respiratory disease and meningoencephalitis. The pathophysiology of Nipah virus meningoencephalitis is poorly understood. METHODS: We have collected the brains of African green monkeys during multiple Nipah virus, Bangladesh studies, resulting in 14 brains with Nipah virus-associated lesions. RESULTS: The lesions seen in the brain of African green monkeys infected with Nipah virus, Bangladesh were very similar to those observed in humans with Nipah virus, Malaysia infection. We observed viral RNA and antigen within neurons and endothelial cells, within encephalitis foci and in uninflamed portions of the CNS. CD8+ T cells had a consistently high prevalence in CNS lesions. We developed a UNet model for quantifying and visualizing inflammation in the brain in a high-throughput and unbiased manner. While CD8+ T cells had a consistently high prevalence in CNS lesions, the model revealed that CD68+ cells were numerically the immune cell with the highest prevalence in the CNS of NiV-infected animals. CONCLUSION: Our study provides an in-depth analysis on Nipah virus infection in the brains of primates, and similarities between lesions in patients and the animals in our study validate this model.

5.
Microbiol Mol Biol Rev ; : e0000123, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912755

RESUMO

SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.

6.
Methods Mol Biol ; 2808: 129-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743367

RESUMO

Many negative-sense single-stranded RNA viruses within the order Mononegavirales harm humans. A common feature shared among cells infected by these viruses is the formation of subcellular membraneless structures called biomolecular condensates, also known as inclusion bodies (IBs), that form through a process called liquid-liquid phase separation (LLPS). Like many other membraneless organelles, viral IBs enrich a specific subset of viral and host proteins involved in the formation of viral particles. Elucidation of the properties and regulation of these IBs as they mature throughout the viral replication process are important for our understanding of viral replication, which may also lead to the development of alternative antiviral treatments. The protocol outlined in this chapter aims to characterize the intrinsic properties of LLPS within the measles virus (MeV, a member of Mononegavirales) IBs by using an imaging approach that fluorescently tags an IB-associated host protein. This method uses common laboratory techniques and is generalizable to any host factors as well as other viral systems.


Assuntos
Recuperação de Fluorescência Após Fotodegradação , Corpos de Inclusão Viral , Vírus do Sarampo , Humanos , Corpos de Inclusão Viral/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Vírus do Sarampo/fisiologia , Vírus do Sarampo/metabolismo , Replicação Viral , Corpos de Inclusão/metabolismo , Animais , Interações Hospedeiro-Patógeno , Separação de Fases
7.
Methods Mol Biol ; 2808: 167-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743370

RESUMO

Measles virus is one of the most contagious airborne human viruses which keeps causing outbreaks in numerous countries over the world despite the existence of an efficient vaccine. Fusion inhibitory lipopeptides were shown to inhibit viral entry into target cells, and their adequate administration into the respiratory tract may provide a novel preventive approach against airborne infections. Aerosol delivery presents the best administration route to deliver such preventive compounds to the upper and lower respiratory tract. This approach offers a conceptually new strategy to protect the population at risk against infection by respiratory viruses, including measles. It is a noninvasive needle-free approach, which may be used when antiviral protection is required, without any medical assistance. In this chapter, we describe the nebulization approach of lipopeptide compounds in nonhuman primates and the subsequent measles virus challenge.


Assuntos
Aerossóis , Modelos Animais de Doenças , Vírus do Sarampo , Sarampo , Animais , Sarampo/prevenção & controle , Lipopeptídeos/administração & dosagem , Humanos , Sistemas de Liberação de Medicamentos/métodos
8.
Methods Mol Biol ; 2808: 141-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743368

RESUMO

Measles virus (MeV) infection of airway surface epithelial cells provides a site for final amplification before being released back into the environment via coughing and sneezing. Multiple cell lines have served as models of polarized epithelia for MeV infection, such as Caco2 cells (intestinal derived human epithelia) or MDCK cells (kidney derived canine epithelia). In this chapter, we describe the materials and air-liquid interface (ALI) culture conditions for maintaining four different cell lines derived from human airway epithelial cells: 16HBE14o-, Calu-3, H358, and NuLi-1. We provide methods for confirming transepithelial electrical resistance (TER) and preparing samples for microscopy as well as expected results from apical or basolateral MeV delivery. Polarized human airway derived cells serve as tissue culture models for investigating targeted questions about how MeV exits a human host. In addition, these methods are generalizable to studies of other respiratory viruses or the biology of ALI airway epithelial cells.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Vírus do Sarampo , Humanos , Vírus do Sarampo/fisiologia , Células Epiteliais/virologia , Células Epiteliais/citologia , Técnicas de Cultura de Células/métodos , Sarampo/virologia , Linhagem Celular , Cães , Animais , Mucosa Respiratória/virologia , Mucosa Respiratória/citologia , Impedância Elétrica
9.
Sci Rep ; 14(1): 10741, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730036

RESUMO

The majority of pigeon paramyxovirus type 1 (PPMV-1) strains are generally non-pathogenic to chickens; however, they can induce severe illness and high mortality rates in pigeons, leading to substantial economic repercussions. The genomes of 11 PPMV-1 isolates from deceased pigeons on meat pigeon farms during passive monitoring from 2009 to 2012 were sequenced and analyzed using polymerase chain reaction and phylogenetic analysis. The complete genome lengths of 11 isolates were approximately 15,192 nucleotides, displaying a consistent gene order of 3'-NP-P-M-F-HN-L-5'. ALL isolates exhibited the characteristic motif of 112RRQKRF117 at the fusion protein cleavage site, which is characteristic of velogenic Newcastle disease virus. Moreover, multiple mutations have been identified within the functional domains of the F and HN proteins, encompassing the fusion peptide, heptad repeat region, transmembrane domains, and neutralizing epitopes. Phylogenetic analysis based on sequences of the F gene unveiled that all isolates clustered within genotype VI in class II. Further classification identified at least two distinct sub-genotypes, with seven isolates classified as sub-genotype VI.2.1.1.2.2, whereas the others were classified as sub-genotype VI.2.1.1.2.1. This study suggests that both sub-genotypes were implicated in severe disease manifestation among meat pigeons, with sub-genotype VI.2.1.1.2.2 displaying an increasing prevalence among Shanghai's meat pigeon population since 2011. These results emphasize the value of developing pigeon-specific vaccines and molecular diagnostic tools for monitoring and proactively managing potential PPMV-1 outbreaks.


Assuntos
Columbidae , Genoma Viral , Doença de Newcastle , Vírus da Doença de Newcastle , Filogenia , Animais , Columbidae/virologia , China/epidemiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Vírus da Doença de Newcastle/classificação , Doença de Newcastle/virologia , Doença de Newcastle/epidemiologia , Genótipo , Fazendas , Carne/virologia
10.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700925

RESUMO

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Assuntos
Infecções por Paramyxoviridae , Paramyxovirinae , Paramyxovirinae/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/veterinária , Mamíferos , China , Filogenia , Genoma Viral , Especificidade de Hospedeiro
11.
Artigo em Inglês | MEDLINE | ID: mdl-38770087

RESUMO

Henipaviruses are enveloped single-stranded, negative-sense RNA viruses of the paramyxovirus family. Two henipaviruses, Nipah virus and Hendra virus, cause a systemic respiratory and/or neurological disease in humans and ten additional species of mammals, with a high fatality rate. Because of their highly pathogenic nature, Nipah virus and Hendra virus are categorized as BSL-4 pathogens, which limits the number and scope of translational research studies on these important human pathogens. To begin to address this limitation, we are developing a BSL-2 model of authentic henipavirus infection in mice, using the non-pathogenic henipavirus, Cedar virus. Notably, wild-type mice are highly resistant to Hendra virus and Nipah virus infection. However, previous work has shown that mice lacking expression of the type I interferon receptor (IFNAR-KO mice) are susceptible to both viruses. Here, we show that luciferase-expressing recombinant Cedar virus (rCedV-luc) is also able to replicate and establish a transient infection in IFNAR-KO mice, but not in wild-type mice. Using longitudinal bioluminescence imaging (BLI) of luciferase expression, we detected rCedV-luc replication as early as 10 h post-infection. Viral replication peaks between days 1 and 3 post-infection, and declines to levels undetectable by BLI by 7 days post-infection. Immunohistochemistry is consistent with viral infection and replication in endothelial cells and other non-immune cell types within tissue parenchyma. Serology analyses demonstrate significant IgG responses to the Cedar virus surface glycoprotein with potent neutralizing activity in IFNAR-KO mice, whereas antibody responses in wild-type animals were non-significant. Overall, these data suggest that rCedV-luc infection of IFNAR-KO mice represents a viable platform for the study of in vivo henipavirus replication, anti-henipavirus host responses and henipavirus-directed therapeutics.

12.
Open Vet J ; 14(1): 12-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633151

RESUMO

Newcastle disease (ND) is a tremendously contagious avian infection with extensive monetary ramifications for the chicken zone. To reduce the effect of ND on the Saudi rooster enterprise, our analysis emphasizes the necessity of genotype-particular vaccinations, elevated surveillance, public recognition campaigns, and stepped-forward biosecurity. Data show that one-of-a-kind bird species, outdoor flocks, and nearby differences in susceptibility are all vulnerable. The pathogenesis consists of tropism in the respiratory and gastrointestinal structures and some genotypes boom virulence. Laboratory diagnostics use reverse transcription-polymerase chain reaction, sequencing, and serotyping among different strategies. Vital records are supplied through immune responses and serological trying out. Vaccination campaigns, biosecurity protocols, and emergency preparedness are all covered in prevention and manipulation techniques. Notably, co-circulating genotypes and disparities in immunization regulations worry Saudi Arabia. The effect of ND in Saudi Arabia is tested in this paper, with precise attention paid to immunological reaction, pathogenesis, susceptibility elements, laboratory analysis, and preventative and manipulation measures. Saudi Arabia can shield its bird region and beef up its defences against Newcastle's ailment, enforcing those hints into its policies.


Assuntos
Doenças dos Bovinos , Doença de Newcastle , Doenças das Aves Domésticas , Bovinos , Animais , Masculino , Aves Domésticas , Galinhas , Arábia Saudita , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/epidemiologia , Doença de Newcastle/epidemiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38683604

RESUMO

Paramyxoviridae is one of the most well known and largest virus families, including some animal and human pathogens, such as the Hendra, Nipah, and Rinderpest viruses, with a high potential for the emergence of human diseases. Based on recent phylogenetic analyses, two new genera (Narmovirus and Jeilongvirus) have been described. The newly recognized genus Jeilongvirus has rapidly increased in number and has grown to 15 species from 7 a few years ago. However, little is known about the diversity, host range, or evolution of Jeilongvirus. As a well-known host reservoir for many pathogens, rodents have always been the focus for characterizing their pathogenic potential. In this study, we isolated a Tailam virus strain (RN-JH-YN-2022-1) belonging to the genus Jeilongvirus from Rattus norvegicus in Yunnan Province, China. The virus presented a near-complete genome (19,046 nucleotides). Similar to other members of the genus Jeilongvirus, the genome of RN-JH-YN-2022-1 contains eight basic genes (3'-N-P/V/C-M-F-SH-TM-G-L-5') with 88.88% sequence identity to Tailam virus (TL8K). Additionally, we discuss the pattern of genus Jeilongvirus diversity and the possible route of spread of the Tailam virus, which could provide new clues into the host range, virus diversity, and geographical distribution of the genus Jeilongvirus.

14.
Emerg Microbes Infect ; 13(1): 2348521, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38686548

RESUMO

A free-range organic broiler (Gallus gallus domesticus) premises in Staffordshire was infected by high pathogenicity avian influenza virus (HPAIV) H5N8 during the 2020-2021 epizootic in the United Kingdom (UK). Following initial confirmation of the infection in poultry, multiple wild bird species were seen scavenging on chicken carcasses. Detected dead wild birds were subsequently demonstrated to have been infected and succumbed to HPAIV H5N8. Initially, scavenging species, magpie (Pica pica) and raven (Corvus corax) were found dead on the premises but over the following days, buzzards (Buteo buteo) were also found dead within the local area with positive detection of HPAIV in submitted carcasses. The subacute nature of microscopic lesions within a buzzard was consistent with the timeframe of infection. Finally, a considerable number of free-living pheasants (Phasianus colchicus) were also found dead in the surrounding area, with carcasses having higher viral antigen loads compared to infected chickens. Limited virus dissemination was observed in the carcasses of the magpie, raven, and buzzard. Further, an avirulent avian paramyxovirus type 1 (APMV-1) was detected within poultry samples as well as in the viscera of a magpie infected with HPAIV. Immunohistochemistry did not reveal colocalization of avian paramyxovirus antigens with lesions, supporting an avirulent APMV-1 infection. Overall, this case highlights scenarios in which bi-directional transmission of avian viral diseases between commercial and wild bird species may occur. It also underlines the importance of bio separation and reduced access when infection pressure from HPAIV is high.


Assuntos
Animais Selvagens , Galinhas , Surtos de Doenças , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Galinhas/virologia , Animais Selvagens/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A Subtipo H5N8/genética , Reino Unido/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/epidemiologia , Aves Domésticas/virologia , Corvos/virologia , Aves/virologia
15.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675988

RESUMO

Sosuga virus (SOSV), a rare human pathogenic paramyxovirus, was first discovered in 2012 when a person became ill after working in South Sudan and Uganda. During an ecological investigation, several species of bats were sampled and tested for SOSV RNA and only one species, the Egyptian rousette bat (ERBs; Rousettus aegyptiacus), tested positive. Since that time, multiple other species have been sampled and ERBs in Uganda have continued to be the only species of bat positive for SOSV infection. Subsequent studies of ERBs with SOSV demonstrated that ERBs are a competent host for SOSV and shed this infectious virus while exhibiting only minor infection-associated pathology. Following the 2014 Ebola outbreak in West Africa, surveillance efforts focused on discovering reservoirs for zoonotic pathogens resulted in the capture and testing of many bat species. Here, SOSV RNA was detected by qRT-PCR only in ERBs captured in the Moyamba District of Sierra Leone in the central region of the country. These findings represent a substantial range extension from East Africa to West Africa for SOSV, suggesting that this paramyxovirus may occur in ERB populations throughout its sub-Saharan African range.


Assuntos
Quirópteros , Animais , Quirópteros/virologia , Serra Leoa/epidemiologia , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/epidemiologia , RNA Viral/genética , Filogenia , Reservatórios de Doenças/virologia , Humanos
16.
Microbiol Spectr ; 12(5): e0041724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606982

RESUMO

Paramyxo- and filovirus genomes are equipped with bipartite promoters at their 3' ends to initiate RNA synthesis. The two elements, the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2), are separated by a spacer region that must be precisely a multiple of 6 nucleotides (nts), indicating these viruses adhere to the "rule of six." However, our knowledge of PE2 has been limited to a narrow spectrum of virus species. In this study, a comparative analysis of 1,647 paramyxoviral genomes from a public database revealed that the paramyxovirus PE2 can be clearly categorized into two distinct subcategories: one marked by C repeats at every six bases (exclusive to the subfamily Orthoparamyxovirinae) and another characterized by CG repeats every 6 nts (observed in the subfamilies Avulavirinae and Rubulavirinae). This unique pattern collectively mirrors the evolutionary lineage of these subfamilies. Furthermore, we showed that PE2 of the Rubulavirinae, with the exception of mumps virus, serves as part of the gene-coding region. This may be due to the fact that the Rubulavirinae are the only paramyxoviruses that cannot propagate without RNA editing. Filoviruses have three to eight consecutive uracil repeats every six bases (UN5) in PE2, which is located in the 3' end region of the genome. We obtained PE2 sequences from 2,195 filoviruses in a public database and analyzed the sequence conservation among virus species. Our results indicate that the continuity of UN5 hexamers is consistently maintained with a high degree of conservation across virus species. IMPORTANCE: The genomic intricacies of paramyxo- and filoviruses are highlighted by the bipartite promoters-promoter element 1 (PE1) and promoter element 2 (PE2)-at their 3' termini. The spacer region between these elements follows the "rule of six," crucial for genome replication. By a comprehensive analysis of paramyxoviral genome sequences, we identified distinct subcategories of PE2 based on C and CG repeats that were specific to Orthoparamyxovirinae and Avulavirinae/Rubulavirinae, respectively, mirroring their evolutionary lineages. Notably, the PE2 of Rubulavirinae is integrated into the gene-coding region, a unique trait potentially linked to its strict dependence on RNA editing for virus growth. This study also focused on the PE2 sequences in filovirus genomes. The strict conservation of the continuity of UN5 among virus species emphasizes its crucial role in viral genome replication.


Assuntos
Filoviridae , Genoma Viral , Filogenia , Regiões Promotoras Genéticas , Regiões Promotoras Genéticas/genética , Genoma Viral/genética , Filoviridae/genética , Filoviridae/classificação , Paramyxoviridae/genética , Paramyxoviridae/classificação , Humanos , RNA Viral/genética , Evolução Molecular , Animais
17.
J Pept Sci ; 30(7): e3593, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471710

RESUMO

In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.


Assuntos
Antivirais , Animais , Antivirais/farmacologia , Antivirais/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Humanos , Testes de Sensibilidade Microbiana , Chlorocebus aethiops , Internalização do Vírus/efeitos dos fármacos
18.
Animals (Basel) ; 14(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473165

RESUMO

Avian paramyxoviruses (APMVs) are often carried by wild waterfowl, and the wild waterfowl may play an important role in the maintenance and spread of these viruses. In this study, we investigated APMVs in the population of migratory wild waterfowl from 2015 to 2021 in Korea and analyzed their genetic characteristics. Fourteen viruses were isolated and subsequently identified as APMV-1 (n = 13) and APMV-13 (n = 1). Phylogenetic analysis of the full fusion gene of 13 APMV-1 isolates showed that 10 APMV-1 isolates belonged to the class II sub-genotype I.2, which was epidemiologically linked to viruses from the Eurasian continent, and 3 viruses belonged to class I, which linked to viruses from the USA. The APMV-13 isolates from wild geese in this study were highly homology to the virus isolated from China. Sequence analysis of 14 isolates showed that all isolates had a typical lentogenic motif at the cleavage site. In summary, we identified the wild species likely to be infected with APMV and our data suggest possible intercontinental transmission of APMV by wild waterfowl. Our current study also provides the first evidence for the presence of class I of APMV-1 and APMV-13 in wild waterfowl surveyed in Korea.

19.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339315

RESUMO

Neurotropic oncolytic viruses are appealing agents to treat brain tumors as they penetrate the blood-brain barrier and induce preferential cytolysis of neoplastic cells. The pathobiological similarities between human and canine brain tumors make immunocompetent dogs with naturally occurring tumors attractive models for the study of oncolytic virotherapies. In this dose-escalation/expansion study, an engineered Lasota NDV strain targeting the urokinase plasminogen activator system (rLAS-uPA) was administered by repetitive intravenous infusions to 20 dogs with intracranial tumors with the objectives of characterizing toxicities, immunologic responses, and neuroradiological anti-tumor effects of the virus for up to 6 months following treatment. Dose-limiting toxicities manifested as fever, hematologic, and neurological adverse events, and the maximum tolerated dose (MTD) of rLAS-uPA was 2 × 107 pfu/mL. Mild adverse events, including transient infusion reactions, diarrhea, and fever were observed in 16/18 of dogs treated at or below MTD. No infectious virus was recoverable from body fluids. Neutralizing antibodies to rLAS-uPA were present in all dogs by 2 weeks post-treatment, and viral genetic material was detected in post-treatment tumors from six dogs. Tumor volumetric reductions occurred in 2/11 dogs receiving the MTD. Systemically administered rLAS-uPA NDV was safe and induced anti-tumor effects in canine brain tumors, although modifications to evade host anti-viral immunity are needed to optimize this novel therapy.

20.
J Virol ; 98(2): e0137223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38214525

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Glicoproteínas/metabolismo , Vírus Hendra/fisiologia , Henipavirus/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Peptídeos/metabolismo , Proteínas Virais de Fusão , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...