RESUMO
The present study aimed at the evaluation of Passiflora coccinea (Aubl.) antioxidant and photo protective in vitro activities, looking forward to their application as antiaging or sunscreen agents in cosmetic formulations. Methanolic and glycolic leaf extracts were prepared by three methods: ultrasound assisted extraction (UAE, 30 min.), maceration at room temperature (72 h) and maceration at 30 ºC (72 h). The antioxidant activities of the extracts were measured by DPPH and ORAC-FL assays and they were incorporated into a cosmetic emulsion to have their sun protection factor (SPF) measured spectrophotometricaly. The antioxidant activity of the emulsions were measured by DPPH and ORAC as well. C-glycosyl-flavones were identified in the extracts by ESI-MS/MS, in comparision with standards. The UAE methanolic extract and the maceration at 30 ºC glycolic extract were submmited to HPLC-DAD analysis and isovitexin was quantifyed in both by a validated method. The methanolic extract antioxidant activity was independent of the extraction method, higher than reported for other species of Passiflora and detectable when incorporated into the emulsion formulation. Maceration at 30oC was the most suitable method for glycolic extraction and its antioxidant activity was lower than the value presented by the methanolic extracts. None of the extracts exhibited a SPF value. Isovitexin in the UAE methanolic extract was 12.67 times higher than the most active glycolic extract, aside of their similar chromatographic profiles. Although a SPF value was not detected, the results indicate that P. coccinea can be a potential new source of antioxidants for topical antiaging formulations.
RESUMO
Several studies on cytogenetic characterisation of passion flowers are helpful to elucidate doubts about taxa relationships, delimitation and classification into more coherent groups based on karyomorphological data. Molecular and conventional cytogenetic techniques were applied to three Passiflora species with red flowers, P. coccinea, P. vitifolia and P. tholozanii, for species karyotype relationships. Additionally, for descriptive morphology, were used flowers, leaves and seeds. Results describe for the first time the karyomorphological and chromosome number (2n = 18) for P. tholozanii. anova was performed (P < 0.05) and statistical significance for average chromosome size (CV: 16.53%) between species. Genomic in situ hybridisation (GISH) proved relationships between P. coccinea and P. tholozanii, which suggests a common origin, however, we could not identify hybridisation between genomic probes from P. vitifolia in P. tholozanii chromosomes. Among the species analysed, P. tholozanii has great similarity in karyotypic and morphology to P. coccinea but not to P. vitifolia. We suggest the inclusion of P. tholozanii in the same subgenus and section as P. coccinea based on the similarity in karyomorphological and morphological traits between the species. Additionally, GISH might indicate a common or hybrid origin of P. tholozanii.
Assuntos
Passiflora/citologia , Corantes Azur , Cromossomos de Plantas/genética , Análise Citogenética , Cariotipagem , Passiflora/anatomia & histologia , Passiflora/genética , Coifa/anatomia & histologia , Coifa/citologia , Coifa/genéticaRESUMO
The diversified genus Passiflora is well distributed all over Brazil, and many species have been long used as medicinal plants, mainly against anxiety disturbances. This effect has been attributed to its rich flavonoid composition. Flavonoids main class, flavonoid glycosides, has presented central action, particularly as sedative-hypnotic, anxiolytic and analgesic. The objective of the present study was to make a phytochemical screening of five little studied Passiflora species, in order to evaluate their phenolic composition. For this aim, HPLC-DAD-ESI-MS/MS was used. After the preparation of the hydroalcoholic extracts, each species was evaluated by direct injection electrospray ionization (ESI) and tandem mass spectrometry. Although belonging to the same genus, the composition of each species presented particularities; this justifies the importance of studies aiming for the phenolic composition of different Passiflora species. Flavones C-glycosides were detected in all extracts, and are found as the main constituents in P. vitifolia, P. coccinea, P. bahiensis and P. sidifolia. In this last one, flavone-6,8-di-C-glycoside, apigenin-6-C-rhamnosyl-8-C-arabinoside are present in high content. Cyclopassiflosides were found in high content together with cyanogenic glycosides in P. quadrangularis, while in P. coccinea, besides flavones-C-glycosides were also found procyanidins.