Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39391977

RESUMO

Genomic regions that play a role in parasite defense are often found to be highly variable, with the MHC serving as an iconic example. Single nucleotide polymorphisms may represent only a small portion of this variability, with Indel polymorphisms and copy number variation further contributing. In extreme cases, haplotypes may no longer be recognized as orthologous. Understanding the evolution of such highly divergent regions is challenging because the most extreme variation is not visible using reference-assisted genomic approaches. Here we analyze the case of the Pasteuria Resistance Complex (PRC) in the crustacean Daphnia magna, a defense complex in the host against the common and virulent bacterium Pasteuria ramosa. Two haplotypes of this region have been previously described, with parts of it being non-homologous, and the region has been shown to be under balancing selection. Using pan-genome analysis and tree reconciliation methods to explore the evolution of the PRC and its characteristics within and between species of Daphnia and other Cladoceran species, our analysis revealed a remarkable diversity in this region even among host species, with many non-homologous hyper-divergent-haplotypes. The PRC is characterized by extensive duplication and losses of Fucosyltransferase (FuT) and Galactosyltransferase (GalT) genes that are believed to play a role in parasite defense. The PRC region can be traced back to common ancestors over 250 million years. The unique combination of an ancient resistance complex and a dynamic, hyper-divergent genomic environment presents a fascinating opportunity to investigate the role of such regions in the evolution and long-term maintenance of resistance polymorphisms. Our findings offer valuable insights into the evolutionary forces shaping disease resistance and adaptation, not only in the genus Daphnia, but potentially across the entire Cladocera class.

2.
Glob Chang Biol ; 30(6): e17341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837568

RESUMO

Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life-history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress-governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life-history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (rm) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life-history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within-host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised.


Assuntos
Aclimatação , Daphnia , Interações Hospedeiro-Patógeno , Temperatura Alta , Animais , Daphnia/microbiologia , Daphnia/fisiologia , Resposta ao Choque Térmico , Fertilidade , Termotolerância , Longevidade
3.
R Soc Open Sci ; 11(4): 231441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577215

RESUMO

For a profound understanding of antagonistic coevolution, it is necessary to identify the coevolving genes. The bacterium Pasteuria and its host, the microcrustacean Daphnia, are a well-characterized paradigm for co-evolution, but the underlying genes remain largely unknown. A genome-wide association study suggested a Pasteuria collagen-like protein 7 (Pcl7) as a candidate mediating parasite attachment and driving its coevolution with the host. Since Pasteuria ramosa cannot currently be genetically manipulated, we used Bacillus thuringiensis to express a fusion protein of a Pcl7 carboxy-terminus from P. ramosa and the amino-terminal domain of a B. thuringiensis collagen-like protein (CLP). Mutant B. thuringiensis (Pcl7-Bt) spores but not wild-type B. thuringiensis (WT-Bt) spores attached to the same site of susceptible hosts as P. ramosa. Furthermore, Pcl7-Bt spores attached readily to susceptible host genotypes, but only slightly to resistant host genotypes. These findings indicated that the fusion protein was properly expressed and folded and demonstrated that indeed the C-terminus of Pcl7 mediates attachment in a host genotype-specific manner. These results provide strong evidence for the involvement of a CLP in the coevolution of Daphnia and P. ramosa and open new avenues for genetic epidemiological studies of host-parasite interactions.

4.
Parasitology ; 151(6): 557-566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616414

RESUMO

Although individual parasite species commonly infect many populations across physical space as well as multiple host species, the extent to which parasites traverse physical and phylogenetic distances is unclear. Population genetic analyses of parasite populations can reveal how parasites move across space or between host species, including helping assess whether a parasite is more likely to infect a different host species in the same location or the same host species in a different location. Identifying these transmission barriers could be exploited for effective disease control. Here, we analysed population genetic structuring of the parasite Pasteuria ramosa in daphniid host species from different lakes. Outbreaks occurred most often in the common host species Daphnia dentifera and Daphnia retrocurva. The genetic distance between parasite samples tended to be smaller when samples were collected from the same lake, the same host species and closer in time. Within lakes, the parasite showed structure by host species and sampling date; within a host species, the parasite showed structure by lake and sampling date. However, despite this structuring, we found the same parasite genotype infecting closely related host species, and we sometimes found the same genotype in nearby lakes. Thus, P. ramosa experiences challenges infecting different host species and moving between populations, but doing so is possible. In addition, the structuring by sampling date indicates potential adaptation to or coevolution with host populations and supports prior findings that parasite population structure is dynamic during outbreaks.


Assuntos
Daphnia , Lagos , Pasteuria , Animais , Daphnia/parasitologia , Daphnia/genética , Lagos/parasitologia , Pasteuria/genética , Pasteuria/fisiologia , Genótipo , Interações Hospedeiro-Parasita , Variação Genética , Especificidade de Hospedeiro , Genética Populacional , Filogenia , Repetições de Microssatélites
5.
Front Microbiol ; 14: 1135252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323892

RESUMO

The competitive exclusion principle asserts that two species cannot stably coexist in the same habitat. However, the presence of a parasite can facilitate temporary coexistence between two host species occupying the same habitat. Studies of parasite-mediated interspecific competition typically use two host species that are both susceptible to a single parasite species, as it is rare to find a resistant host species that requires a parasite to enable coexistence with a competitively superior susceptible host. We therefore investigated how two host species characterized by different susceptibility profiles affect each other when they coexist in the same habitat, by conducting two long-term mesocosm experiments in the laboratory. We followed populations of Daphnia similis coexisting with Daphnia magna, in either the presence or absence of the microsporidium Hamiltosporidium tvaerminnensis and then the bacterium Pasteuria ramosa. We found that in the absence of parasites, D. magna competitively excluded D. similis within a short period of time. However, in the presence of either parasites, the competitive ability of D. magna decreased dramatically. Our results emphasize the importance of parasites in shaping community structure and composition, by allowing coexistence of a resistant host species that would otherwise become extinct.

6.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220015, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744562

RESUMO

Disease agents play an important role in the ecology and life history of wild and cultivated populations and communities. While most studies focus on the adaptation of parasites to their hosts, the adaptation of free-living parasite stages to their external (off-host) environment may tell us a lot about the factors that shape the distribution of parasites. Pasteuria ramosa is an endoparasitic bacterium of the water flea Daphnia with a wide geographical distribution. Its transmission stages rest outside of the host and thus experience varying environmental regimes. We examined the life history of P. ramosa populations from four environmental conditions (i.e. groups of habitats): the factorial combinations of summer-dry water bodies or not, and winter-freeze water bodies or not. Our goal was to examine how the combination of winter temperature and summer dryness affects the parasite's ability to attach to its host and to infect it. We subjected samples of the four groups of habitats to temperatures of 20, 33, 46 and 60°C in dry and wet conditions, and exposed a susceptible clone of Daphnia magna to the treated spores. We found that spores which had undergone desiccation endured higher temperatures better than spores kept wet, both regarding attachment and subsequent infection. Furthermore, spores treated with heightened temperatures were much less infective and virulent. Even under high temperatures (60°C), exposed spores from all populations were able to attach to the host cuticle, albeit they were unable to establish infection. Our work highlights the sensitivity of a host-free resting stage of a bacterial parasite to the external environment. Long heatwaves and harsh summers, which are becoming more frequent owing to recent climate changes, may therefore pose a problem for parasite survival. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Assuntos
Parasitos , Animais , Interações Hospedeiro-Patógeno , Virulência , Bactérias , Daphnia/microbiologia
7.
Ecol Evol ; 13(1): e9676, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694542

RESUMO

Myriad ecological and evolutionary factors can influence whether a particular parasite successfully transmits to a new host during a disease outbreak, with consequences for the structure and diversity of parasite populations. However, even though the diversity and evolution of parasite populations are of clear fundamental and applied importance, we have surprisingly few studies that track how genetic structure of parasites changes during naturally occurring outbreaks in non-human populations. Here, we used population genetic approaches to reveal how genotypes of a bacterial parasite, Pasteuria ramosa, change over time, focusing on how infecting P. ramosa genotypes change during the course of epidemics in Daphnia populations in two lakes. We found evidence for genetic change - and, therefore, evolution - of the parasite during outbreaks. In one lake, P. ramosa genotypes were structured by sampling date; in both lakes, genetic distance between groups of P. ramosa isolates increased with time between sampling. Diversity in parasite populations remained constant over epidemics, although one epidemic (which was large) had low genetic diversity while the other epidemic (which was small) had high genetic diversity. Our findings demonstrate that patterns of parasite evolution differ between outbreaks; future studies exploring the feedbacks among epidemic size, host diversity, and parasite genetic diversity would improve our understanding of parasite dynamics and evolution.

8.
Evol Ecol ; 37(1): 113-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35431396

RESUMO

Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in the Daphnia-Pasteuria model system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak of Pasteuria ramosa in Daphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild. Supplementary Information: The online version contains supplementary material available at 10.1007/s10682-022-10169-6.

9.
Mol Biol Evol ; 38(11): 4918-4933, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34289047

RESUMO

The link between long-term host-parasite coevolution and genetic diversity is key to understanding genetic epidemiology and the evolution of resistance. The model of Red Queen host-parasite coevolution posits that high genetic diversity is maintained when rare host resistance variants have a selective advantage, which is believed to be the mechanistic basis for the extraordinarily high levels of diversity at disease-related genes such as the major histocompatibility complex in jawed vertebrates and R-genes in plants. The parasites that drive long-term coevolution are, however, often elusive. Here we present evidence for long-term balancing selection at the phenotypic (variation in resistance) and genomic (resistance locus) level in a particular host-parasite system: the planktonic crustacean Daphnia magna and the bacterium Pasteuria ramosa. The host shows widespread polymorphisms for pathogen resistance regardless of geographic distance, even though there is a clear genome-wide pattern of isolation by distance at other sites. In the genomic region of a previously identified resistance supergene, we observed consistent molecular signals of balancing selection, including higher genetic diversity, older coalescence times, and lower differentiation between populations, which set this region apart from the rest of the genome. We propose that specific long-term coevolution by negative-frequency-dependent selection drives this elevated diversity at the host's resistance loci on an intercontinental scale and provide an example of a direct link between the host's resistance to a virulent pathogen and the large-scale diversity of its underlying genes.


Assuntos
Daphnia , Genoma , Animais , Daphnia/genética , Daphnia/microbiologia , Interações Hospedeiro-Parasita/genética , Polimorfismo Genético
10.
Mol Biol Evol ; 38(4): 1512-1528, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258959

RESUMO

Parasites are a major evolutionary force, driving adaptive responses in host populations. Although the link between phenotypic response to parasite-mediated natural selection and the underlying genetic architecture often remains obscure, this link is crucial for understanding the evolution of resistance and predicting associated allele frequency changes in the population. To close this gap, we monitored the response to selection during epidemics of a virulent bacterial pathogen, Pasteuria ramosa, in a natural host population of Daphnia magna. Across two epidemics, we observed a strong increase in the proportion of resistant phenotypes as the epidemics progressed. Field and laboratory experiments confirmed that this increase in resistance was caused by selection from the local parasite. Using a genome-wide association study, we built a genetic model in which two genomic regions with dominance and epistasis control resistance polymorphism in the host. We verified this model by selfing host genotypes with different resistance phenotypes and scoring their F1 for segregation of resistance and associated genetic markers. Such epistatic effects with strong fitness consequences in host-parasite coevolution are believed to be crucial in the Red Queen model for the evolution of genetic recombination.


Assuntos
Coevolução Biológica , Daphnia/microbiologia , Interações Hospedeiro-Parasita/genética , Modelos Genéticos , Pasteuria/fisiologia , Seleção Genética , Animais , Epistasia Genética , Fenótipo
11.
Ecol Evol ; 10(23): 12851-12859, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304498

RESUMO

The climate is warming at an unprecedented rate, pushing many species toward and beyond the upper temperatures at which they can survive. Global change is also leading to dramatic shifts in the distribution of pathogens. As a result, upper thermal limits and susceptibility to infection should be key determinants of whether populations continue to persist, or instead go extinct. Within a population, however, individuals vary in both their resistance to both heat stress and infection, and their contributions to vital growth rates. No more so is this true than for males and females. Each sex often varies in their response to pathogen exposure, thermal tolerances, and particularly their influence on population growth, owing to the higher parental investment that females typically make in their offspring. To date, the interplay between host sex, infection, and upper thermal limits has been neglected. Here, we explore the response of male and female Daphnia to bacterial infection and static heat stress. We find that female Daphnia, when uninfected, are much more resistant to static heat stress than males, but that infection negates any advantage that females are afforded. We discuss how the capacity of a population to cope with multiple stressors may be underestimated unless both sexes are considered simultaneously.

12.
Mol Biol Evol ; 37(12): 3439-3452, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32658956

RESUMO

Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host-pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host-pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host-pathogen system.


Assuntos
Coevolução Biológica , Interações Hospedeiro-Patógeno/genética , Pasteuria/genética , Proteínas de Bactérias/química , Genes Bacterianos , Estudo de Associação Genômica Ampla , Glicosilação , Pasteuria/patogenicidade , Polimorfismo de Nucleotídeo Único , Estrutura Quaternária de Proteína
13.
Proc Biol Sci ; 287(1920): 20192386, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32075526

RESUMO

Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa. In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts-effects that are central to understanding immunity and the effect of vaccines.


Assuntos
Daphnia/microbiologia , Interações Hospedeiro-Parasita , Pasteuria/fisiologia , Animais , Daphnia/imunologia , Daphnia/fisiologia , Interações Hospedeiro-Patógeno
14.
Evolution ; 74(8): 1856-1864, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32052425

RESUMO

Environmentally transmitted parasites spend time in the abiotic environment, where they are subjected to a variety of stressors. Learning how they face this challenge is essential if we are to understand how host-parasite interactions may vary across environmental gradients. We used a zooplankton-bacteria host-parasite system where availability of sunlight (solar radiation) influences disease dynamics to look for evidence of parasite local adaptation to sunlight exposure. We also examined how variation in sunlight tolerance among parasite strains impacted host reproduction. Parasite strains collected from clearer lakes (with greater sunlight penetration) were most tolerant of the negative impacts of sunlight exposure, suggesting local adaptation to sunlight conditions. This adaptation came with both a cost and a benefit for parasites: parasite strains from clearer lakes produced relatively fewer transmission stages (spores) but these strains were more infective. After experimental sunlight exposure, the most sunlight-tolerant parasite strains reduced host fecundity just as much as spores that were never exposed to sunlight. Sunlight availability varies greatly among lakes around the world. Our results suggest that the selective pressure sunlight exposure exerts on parasites may impact both parasite and host fitness, potentially driving variation in disease epidemics and host population dynamics across sunlight availability gradients.


Assuntos
Adaptação Biológica , Evolução Biológica , Aptidão Genética , Interações Hospedeiro-Patógeno/genética , Pasteuria/efeitos da radiação , Animais , Daphnia/microbiologia , Fertilidade , Interações Hospedeiro-Patógeno/efeitos da radiação , Pasteuria/fisiologia , Esporos Bacterianos/crescimento & desenvolvimento
15.
Evol Lett ; 3(5): 555-566, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636946

RESUMO

Repeated extinction and recolonization events generate a landscape of host populations that vary in their time since colonization. Within this dynamic landscape, pathogens that excel at invading recently colonized host populations are not necessarily those that perform best in host populations at or near their carrying capacity, potentially giving rise to divergent selection for pathogen traits that mediate the invasion process. Rarely, however, has this contention been empirically tested. Using Daphnia magna, we explored how differences in the colonization history of a host population influence the invasion success of different genotypes of the pathogen Pasteuria ramosa. By partitioning the pathogen invasion process into a series of individual steps, we show that each pathogen optimizes invasion differently when encountering host populations that vary in their time since colonization. All pathogen genotypes were more likely to establish successfully in recently colonized host populations, but the production of transmission spores was typically maximized in either the subsequent growth or stationary phase of host colonization. Integrating across the first three pathogen invasion steps (initial establishment, proliferation, and secondary infection) revealed that overall pathogen invasion success (and its variance) was, nonetheless, highest in recently colonized host populations. However, only pathogens that were slow to kill their host were able to maximize host-facilitated dispersal. This suggests that only a subset of pathogen genotypes-the less virulent and more dispersive-are more likely to encounter newly colonized host populations at the front of a range expansion or in metapopulations with high extinction rates. Our results suggest a fundamental trade-off for a pathogen between dispersal and virulence, and evidence for higher invasion success in younger host populations, a finding with clear implications for pathogen evolution in spatiotemporally dynamic settings.

16.
Mol Ecol ; 28(17): 3942-3957, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31283079

RESUMO

How a host fights infection depends on an ordered sequence of steps, beginning with attempts to prevent a pathogen from establishing an infection, through to steps that mitigate a pathogen's control of host resources or minimize the damage caused during infection. Yet empirically characterizing the genetic basis of these steps remains challenging. Although each step is likely to have a unique genetic and environmental signature, and may therefore respond to selection in different ways, events that occur earlier in the infection process can mask or overwhelm the contributions of subsequent steps. In this study, we dissect the genetic architecture of a stepwise infection process using a quantitative trait locus (QTL) mapping approach. We control for variation at the first line of defence against a bacterial pathogen and expose downstream genetic variability related to the host's ability to mitigate the damage pathogens cause. In our model, the water-flea Daphnia magna, we found a single major effect QTL, explaining 64% of the variance, that is linked to the host's ability to completely block pathogen entry by preventing their attachment to the host oesophagus; this is consistent with the detection of this locus in previous studies. In susceptible hosts allowing attachment, however, a further 23 QTLs, explaining between 5% and 16% of the variance, were mapped to traits related to the expression of disease. The general lack of pleiotropy and epistasis for traits related to the different stages of the infection process, together with the wide distribution of QTLs across the genome, highlights the modular nature of a host's defence portfolio, and the potential for each different step to evolve independently. We discuss how isolating the genetic basis of individual steps can help to resolve discussion over the genetic architecture of host resistance.


Assuntos
Daphnia/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Pasteuria/genética , Animais , Variação Genética , Genótipo , Infecções por Bactérias Gram-Positivas/prevenção & controle , Escore Lod , Fenótipo , Locos de Características Quantitativas/genética
17.
Biol Lett ; 15(6): 20190180, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31213141

RESUMO

Pathogens often rely on their host for dispersal. Yet, maximizing fitness via replication can cause damage to the host and an associated reduction in host movement, incurring a trade-off between transmission and dispersal. Here, we test the idea that pathogens might mitigate this trade-off between reproductive fitness and dispersal by taking advantage of sexual dimorphism in their host, tailoring responses separately to males and females. Using experimental populations of Daphnia magna and its bacterial pathogen Pasteuria ramosa as a test-case, we find evidence that this pathogen can use male hosts as a dispersal vector, and the larger females as high-quality resource patches for optimized production of transmission spores. As sexual dimorphism in dispersal and body size is widespread across the animal kingdom, this differential exploitation of the sexes by a pathogen might be an unappreciated phenomenon, possibly evolved in various systems.


Assuntos
Pasteuria , Caracteres Sexuais , Animais , Daphnia , Feminino , Aptidão Genética , Interações Hospedeiro-Patógeno , Masculino
18.
Evolution ; 73(7): 1443-1455, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111957

RESUMO

Natural infections often consist of multiple pathogens of the same or different species. When coinfections occur, pathogens compete for access to host resources and fitness is determined by how well a pathogen can reproduce compared to its competitors. Yet not all hosts provide the same resource pool. Males and females, in particular, commonly vary in both their acquisition of resources and investment in immunity, but their ability to modify any competition between different pathogens remains unknown. Using the Daphnia magna-Pasteuria ramosa model system, we exposed male and female hosts to either a single genotype infection or coinfections consisting of two pathogen genotypes of varying levels of virulence. We found that coinfections within females favored the transmission of the more virulent pathogen genotype, whereas coinfections within male hosts resulted in equal transmission of competing pathogen genotypes. This contrast became less pronounced when the least virulent pathogen was able to establish an infection first, suggesting that the influence of host sex is shaped by priority effects. We suggest that sex is a form of host heterogeneity that may influence the evolution of virulence within coinfection contexts and that one sex may be a reservoir for pathogen genetic diversity in nature.


Assuntos
Daphnia/microbiologia , Daphnia/fisiologia , Interações Hospedeiro-Patógeno , Pasteuria/fisiologia , Animais , Feminino , Genótipo , Masculino , Pasteuria/genética , Caracteres Sexuais
19.
BMC Ecol ; 19(1): 14, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871516

RESUMO

BACKGROUND: Understanding the impact of disease in natural populations requires an understanding of infection risk and the damage that parasites cause to their hosts (= virulence). However, because these disease traits are often studied and quantified under controlled laboratory conditions and with reference to healthy control hosts, we have little knowledge about how they play out in natural conditions. In the Daphnia-Pasteuria host-parasite system, field assessments often show very low estimates of virulence, while controlled laboratory experiments indicate extremely high virulence. RESULTS: To examine this discrepancy, we sampled Daphnia magna hosts from the field during a parasite epidemic and recorded disease traits over a subsequent 3-week period in the laboratory. As predicted for chronic disease where infections in older (larger) hosts are also, on average, older, we found that larger D. magna females were infected more often, had fewer offspring prior to the onset of castration and showed signs of infection sooner than smaller hosts. Also consistent with laboratory experiments, infected animals were found in both sexes and in all sizes of hosts. Infected females were castrated at capture or became castrated soon after. As most females in the field carried no eggs in their brood pouch at the time of sampling, virulence estimates of infected females relative to uninfected females were low. However, with improved feeding conditions in the laboratory, only uninfected females resumed reproduction, resulting in very high relative virulence estimates. CONCLUSIONS: Overall, our study shows that the disease manifestation of P. ramosa, as expressed under natural conditions, is consistent with what we know from laboratory experiments. However, parasite induced fecundity reduction of infected, relative to uninfected hosts depended strongly on the environmental conditions. We argue that this effect is particularly strong for castrating parasites, because infected hosts have low fecundity under all conditions.


Assuntos
Evolução Biológica , Daphnia/microbiologia , Interações Hospedeiro-Patógeno , Pasteuria/fisiologia , Animais , Lagos , Suíça , Zooplâncton/microbiologia
20.
Aquat Toxicol ; 206: 91-101, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468978

RESUMO

The interaction of pollutants and pathogens may result in altered and often enhanced effects of the chemical, the biotic stressor or both. These interaction effects cannot be reliably predicted from the toxicity of the chemical or the virulence of the pathogen alone. While standardized detection methods for immunotoxic effects of chemicals exist with regard to human health, employing host-resistance assays with vertebrates, such standardized test systems are completely lacking for invertebrate species and no guidance is available on how immunotoxic effects of a chemical in invertebrates could be definitively identified. In the present study, we investigated the impact of the immunosuppressive pharmaceutical cyclosporine A (CsA) on the invertebrate host-pathogen system Daphnia magna - Pasteuria ramosa. CsA is a calcineurin-inhibitor in vertebrates and also known to have antibiotic as well as antifungal properties. Juvenile D. magna were exposed to CsA for 21 days with or without additional pathogen challenge during the first 72 h of exposure. Long-term survival of the host D. magna was synergistically impacted by co-exposure to the chemical and the pathogen, expressed e.g. in significantly enhanced hazard ratios. Additionally, enhanced virulence of the pathogen upon chemical co-exposure was expressed in an increased proportion of infected hosts and an increased speed of Pasteuria-induced host sterilization. In contrast, effects on reproduction were additive in Pasteuria-challenged, but finally non-infected D. magna. The enhancing effects of CsA occurred at and below 3 µg/L, which was in the absence of the pathogen the lowest concentration significantly impacting the standard toxicity endpoint 'reproduction' in D. magna. Hence, the present study provides evidence that a pharmaceutical intended to suppress the human immune system can also suppress disease resistance of an aquatic invertebrate organism at otherwise non-toxic concentrations. Plausible ways of direct interactions of CsA with the host's immune system are discussed, e.g. interference with phagocytosis or Toll-like receptors. Experimental verification of such a direct interference would be warranted to support the strong evidence for immunotoxic activity of CsA in invertebrates. While it remains open whether CsA concentrations in the environment are high enough to trigger adverse effects in environmental organisms, our findings highlight the need to consider immunotoxicity in an environmental risk assessment, and to develop suitable standardized methods for this purpose.


Assuntos
Ciclosporina/toxicidade , Daphnia/efeitos dos fármacos , Daphnia/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Pasteuria/efeitos dos fármacos , Pasteuria/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA