Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Autoimmun ; 147: 103278, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943864

RESUMO

Immune checkpoints are essential regulators of immune responses, either by activating or suppressing them. Consequently, they are regarded as pivotal elements in the management of infections, cancer, and autoimmune disorders. In recent years, researchers have identified numerous soluble immune checkpoints that are produced through various mechanisms and demonstrated biological activity. These soluble immune checkpoints can be produced and distributed in the bloodstream and various tissues, with their roles in immune response dysregulation and autoimmunity extensively documented. This review aims to provide a thorough overview of the generation of various soluble immune checkpoints, such as sPD-1, sCTLA-4, sTim-3, s4-1BB, sBTLA, sLAG-3, sCD200, and the B7 family, and their importance as indicators for the diagnosis and prediction of autoimmune conditions. Furthermore, the review will investigate the potential pathological mechanisms of soluble immune checkpoints in autoimmune diseases, emphasizing their association with autoimmune diseases development, prognosis, and treatment.

3.
Mol Genet Metab Rep ; 39: 101091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770403

RESUMO

Branched chain ketoacid dehydrogenase kinase (BCKDK) deficiency is a recently described inherited neurometabolic disorder of branched chain amino acid (BCAA) metabolism implying increased BCAA catabolism. It has been hypothesized that a severe reduction in systemic BCAA levels underlies the disease pathophysiology, and that BCAA supplementation may ameliorate disease phenotypes. To test this hypothesis, we characterized a recent mouse model of BCKDK deficiency and evaluated the efficacy of enteral BCAA supplementation in this model. Surprisingly, BCAA supplementation exacerbated neurodevelopmental deficits and did not correct biochemical abnormalities despite increasing systemic BCAA levels. These data suggest that aberrant flux through the BCAA catabolic pathway, not just BCAA insufficiency, may contribute to disease pathology. In support of this conclusion, genetic re-regulation of BCAA catabolism, through Dbt haploinsufficiency, partially rescued biochemical and behavioral phenotypes in BCKDK deficient mice. Collectively, these data raise into question assumptions widely made about the pathophysiology of BCKDK insufficiency and suggest a novel approach to develop potential therapies for this disease.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38558377

RESUMO

Rehabilitation exercise is a crucial non-pharmacological intervention for the secondary prevention and treatment of cardiovascular diseases, effectively ameliorating cardiac remodeling in patients. Exercise training can mitigate cardiomyocyte apoptosis, reduce extracellular matrix deposition and fibrosis, promote angiogenesis, and regulate inflammatory response to improve cardiac remodeling. This article presents a comprehensive review of recent research progress, summarizing the pivotal role and underlying mechanism of rehabilitation exercise in improving cardiac remodeling and providing valuable insights for devising effective rehabilitation treatment programs. Graphical Abstract.

5.
Zhongguo Zhong Yao Za Zhi ; 49(4): 884-893, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621895

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by infection, with high morbidity and mortality. Sepsis-induced liver injury(SILI) is one of the manifestations of sepsis-induced multiple organ syndrome. At present, there is no recommended pharmacological intervention for the treatment of SILI. traditional Chinese medicine(TCM), based on the holism and dialectical treatment concept, shows the therapeutic characteristics of multi-target and multi-pathway and can comprehensively prevent and treat SILI by interfering with inflammatory factors, inflammatory signaling pathways, and anti-oxidative stress and inhibiting apoptosis. This article reviewed the experimental studies on the treatment of SILI with TCM to clarify its pathogenic mechanism and therapeutic characteristics, so as to provide more ideas and directions for the development or preparation of new drugs.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Sepse , Humanos , Medicina Tradicional Chinesa , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Apoptose , Transdução de Sinais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
6.
Front Pediatr ; 12: 1305754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586154

RESUMO

Joubert syndrome (JS) is a rare autosomal recessive neurodevelopmental condition characterized by congenital mid-hindbrain abnormalities and a variety of clinical manifestations. This article describes a case of Joubert syndrome type 21 with microcephaly, seizures, developmental delay and language regression, caused by a CSPP1 gene variant and examines the contributing variables. This paper advances the understanding of JS by summarizing the literature and offering detection patterns for practitioners with clinical suspicions of JS.

7.
Clinics (Sao Paulo) ; 79: 100357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640750

RESUMO

OBJECTIVES: The pathogenic mechanisms of Thromboangiitis Obliterans (TAO) are not entirely known and autoimmune inflammation plays a vital role in the initiation and continuance of TAO activity. The authors investigated in this study the role of the TLR signaling pathway in the pathogenesis of TAO. METHODS: First, the authors detected the expressions of MyD88, TRIF and NF-κB in vascular walls of 46 patients with TAO and 32 patients with trauma and osteosarcoma by western blot assay. Second, the authors detected the cellular localization of MyD88, TRIF and NF-κB in vascular walls of patients with TAO by immunofluorescent assay. RESULTS: The protein expressions of MyD88, TRIF and NF-κB were much higher in vascular walls of TAO patients (p < 0.05). Higher expressions of MyD88 and NF-κB were detected both on vascular endothelial and vascular smooth muscle cells of TAO patients. However, higher expression of TRIF was just detected on vascular smooth muscle cells of TAO patients. CONCLUSIONS: These dates suggest that the TLR signaling pathway might play an important role in the pathogenesis of TAO, it might induce vasospasm, vasculitis and thrombogenesis to lead to the pathogenesis and progression of TAO.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Tromboangiite Obliterante , Receptores Toll-Like , Humanos , Tromboangiite Obliterante/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Masculino , Receptores Toll-Like/metabolismo , Feminino , Adulto , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Pessoa de Meia-Idade , Western Blotting , Adulto Jovem , Músculo Liso Vascular/metabolismo , Adolescente , Estudos de Casos e Controles
8.
J Cell Mol Med ; 28(8): e18305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647244

RESUMO

NKAP mutations are associated with Hackmann-Di Donato-type X-linked syndromic intellectual developmental disorder (MRXSHD, MIM: #301039). Here, we elucidate the potential prenatal manifestation of NKAP mutation-associated disorder for the first time, alongside revealing the relationship between NKAP mutations and congenital heart defect (CHD) in the Chinese population. An NKAP mutation (NM_024528.4: c.988C>T, p.Arg330Cys) was identified in two foetuses presenting with CHD. Subsequent mechanistic exploration revealed a marked downregulation of NKAP transcription within HEK293T cells transfected with NKAP p.R330C. However, no significant change was observed at the protein level. Moreover, the mutation led to a dysregulation in the transcription of genes associated with cardiac morphogenesis, such as DHRS3, DNAH11 and JAG1. Additionally, our research determined that NKAP p.R330C affected Nkap protein intra-nuclear distribution, and binding with Hdac3. Summarily, our study strengthens NKAP mutations as a cause of CHD and prompts the reclassification of NKAP p.R330C as likely pathogenic, thereby establishing a prospective prenatal phenotypic spectrum that provides new insight into the prenatal diagnosis of CHD. Our findings also provide evidence of NKAP p.R330C pathogenicity and demonstrate the potential mechanism by which p.R330C dysregulates cardiac developmental gene transcription by altering Nkap intra-nuclear distribution and obstructing the interaction between Nkap and Hdac3, thereby leading to CHD.


Assuntos
Cardiopatias Congênitas , Mutação , Fenótipo , Humanos , Cardiopatias Congênitas/genética , Mutação/genética , Feminino , Células HEK293 , Predisposição Genética para Doença , Masculino , Gravidez
9.
Biomolecules ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397416

RESUMO

BACKGROUND: The pathophysiologic heterogeneity of heart failure (HF) necessitates a more detailed identification of diagnostic biomarkers that can reflect its diverse pathogenic pathways. METHODS: We conducted weighted gene and multiscale embedded gene co-expression network analysis on differentially expressed genes obtained from HF and non-HF specimens. We employed a machine learning integration framework and protein-protein interaction network to identify diagnostic biomarkers. Additionally, we integrated gene set variation analysis, gene set enrichment analysis (GSEA), and transcription factor (TF)-target analysis to unravel the biomarker-dominant pathways. Leveraging single-sample GSEA and molecular docking, we predicted immune cells and therapeutic drugs related to biomarkers. Quantitative polymerase chain reaction validated the expressions of biomarkers in the plasma of HF patients. A two-sample Mendelian randomization analysis was implemented to investigate the causal impact of biomarkers on HF. RESULTS: We first identified COL14A1, OGN, MFAP4, and SFRP4 as candidate biomarkers with robust diagnostic performance. We revealed that regulating biomarkers in HF pathogenesis involves TFs (BNC2, MEOX2) and pathways (cell adhesion molecules, chemokine signaling pathway, cytokine-cytokine receptor interaction, oxidative phosphorylation). Moreover, we observed the elevated infiltration of effector memory CD4+ T cells in HF, which was highly related to biomarkers and could impact immune pathways. Captopril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and genistein were predicted as therapeutic drugs alleviating HF via interactions with biomarkers. In vitro study confirmed the up-regulation of OGN as a plasma biomarker of HF. Mendelian randomization analysis suggested that genetic predisposition toward higher plasma OGN promoted the risk of HF. CONCLUSIONS: We propose OGN as a diagnostic biomarker for HF, which may advance our understanding of the diagnosis and pathogenesis of HF.


Assuntos
Insuficiência Cardíaca , Aprendizado de Máquina , Humanos , Biomarcadores , Captopril , Proteínas de Transporte , Proteínas da Matriz Extracelular , Glicoproteínas , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Peptídeos e Proteínas de Sinalização Intercelular , Simulação de Acoplamento Molecular , Fosforilação Oxidativa
10.
Front Cell Infect Microbiol ; 14: 1258246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362497

RESUMO

Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.


Assuntos
Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares , Matriz Extracelular , Fibroblastos , Metaboloma , Pulmão
11.
Front Neurosci ; 18: 1353759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327847

RESUMO

Objective: Anxiety symptoms are prevalent neuropsychiatric manifestations in Parkinson's disease (PD) and impact the development of motor complications. Our aim was to evaluate the association of GBA variants with the anxiety development in early PD cohort. Methods: This cohort study used data from the Parkinson Progression Marker Initiative. The primary outcome anxiety was assessed by State-Trait Anxiety Inventory (STAI). The association between GBA and longitudinal change in the STAI total score was examined using linear mixed-effects model, and the association between GBA and anxiety progression was examined using Cox survival analysis. Results: A total of 385 patients with PD were included in this study, 39 of them were GBA variant carriers and 346 were idiopathic PD without GBA variants. Patients with GBA variants had faster annual increase in anxiety score (ß = 0.44; 95% CI, 0.18 to 0.71; p < 0.001) and were at higher risk of anxiety progression (HR 1.87; 95% CI, 1.03 to 3.41; p = 0.03,). Higher baseline scores for Scales for Outcomes in Parkinson's Disease-Autonomic (SCOPA-AUT), which indicated the autonomic dysfunction, also independently predicted faster increase in anxiety score (ß = 0.48; 95%CI, 0.19 to 0.69; p < 0.001) and higher incidence of anxiety development (HR = 1.05; 95% CI, 1.01 to 1.08; p = 0.008). Interpretation: These findings suggest that longitudinal anxiety symptoms worsening was faster in PD patients who were GBA variant carriers and have dysautonomia, and this association was enhanced if they have both.

12.
Infect Drug Resist ; 17: 449-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333568

RESUMO

Klebsiella pneumoniae (K. pneumoniae), a significant contributor to the global challenge of antibiotic resistance, is not only a ubiquitous component of the human microbiome but also a potent pathogen capable of causing a spectrum of diseases. This review provides a thorough analysis of the intricate interactions between K. pneumoniae and the human immune system, elucidating its substantial impact on metabolic processes. We explore the mechanisms employed by K. pneumoniae to evade and manipulate immune responses, including molecular mimicry, immune modulation, and biofilm formation. The review further investigates the bacterium's influence on metabolic pathways, particularly glycolysis, highlighting how these interactions exacerbate disease severity. The emergence of multidrug-resistant and extremely drug-resistant strains within the Enterobacteriaceae family has heightened the public health crisis, underscoring the urgency for comprehensive research. We investigate the roles of the host's complement system, autophagy, cell death mechanisms, and various cytokines in combating K. pneumoniae infections, shedding light on areas that warrant further academic investigation. Additionally, the review discusses the challenges posed by K1- and K2-capsule polysaccharides in vaccine development due to their complex molecular structures and adhesive properties. Acknowledging the limited availability of effective antimicrobials, this review advocates for exploring alternative approaches such as immunotherapeutics, vaccinations, and phage therapy. We consolidate current knowledge on K. pneumoniae, covering classical and non-classical subtypes, antimicrobial resistance-mediated genes, virulence factors, and epidemiological trends in isolation and antibiotic resistance rates. This comprehensive review not only advances our understanding of K. pneumoniae but also underscores the imperative for ongoing research and collaborative efforts to develop new prevention and treatment strategies against this formidable pathogen.

13.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337827

RESUMO

Endometriosis is a chronic inflammatory disease, which explains the pain that such patients report. Currently, we are faced with ineffective, non-invasive diagnostic methods and treatments that come with multiple side effects and high recurrence rates for both the disease and pain. These are the reasons why we are exploring the possibility of the involvement of pro-inflammatory and anti-inflammatory molecules in the process of the appearance of endometriosis. Cytokines play an important role in the progression of endometriosis, influencing cell proliferation and differentiation. Pro-inflammatory molecules are found in intrafollicular fluid. They have an impact on the number of mature and optimal-quality oocytes. Endometriosis affects fertility, and the involvement of endometriosis in embryo transfer during in vitro fertilization (IVF) is being investigated in several studies. Furthermore, the reciprocal influence between anti-inflammatory and pro-inflammatory cytokines and their role in the pathogenesis of endometriosis has been assessed. Today, we can affirm that pro-inflammatory and anti-inflammatory cytokines play roles in survival, growth, differentiation, invasion, angiogenesis, and immune escape, which provides a perspective for approaching future clinical implications and can be used as biomarkers or therapy.

14.
Ageing Res Rev ; 99: 102235, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38367814

RESUMO

Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.

15.
Bull Entomol Res ; 114(2): 190-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328866

RESUMO

Reticulitermes chinensis Snyder is an important pest in forestry and construction and is widely distributed in China. We found that Serratia marcescens Bizio strain SM1 has insecticidal activity to R. chinensis, but the pathogenic mechanism of SM1 to R. chinensis is not clear. Therefore, full-length transcriptome sequencing was performed on R. chinensis infected with SM1 and the control group. A total of 230 differentially expressed genes were identified by comparing SM1 infection group and the control group, among which 103 were downregulated and 127 were upregulated. We found downregulated genes in nine metabolic pathway categories, among which carbohydrate metabolism had the most downregulated genes, followed by energy metabolism and amino acid metabolism. We also found that some downregulated genes were related to pattern recognition receptors, cellular immunity, and humoral immunity, indicating that R. chinensis immunity was negatively affected by SM1 infection. In addition, some genes in signal transduction and genetic information processing pathways were downregulated. In this study, high-throughput full-length transcriptome analysis was used to analyse the pathogenic mechanism of SM1 to R. chinensis. The results of this study provide useful information for exploring the relationship between SM1 and R. chinensis, and provide theoretical support for the future application of SM1 and the prevention and treatment of R. chinensis.


Assuntos
Serratia marcescens , Transcriptoma , Serratia marcescens/genética , Animais , Mariposas/microbiologia , Mariposas/genética , Mariposas/imunologia , Perfilação da Expressão Gênica
16.
J Clin Endocrinol Metab ; 109(7): 1803-1813, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38214665

RESUMO

OBJECTIVE: Deficiency of cartilage-associated protein (CRTAP) can cause extremely rare autosomal recessive osteogenesis imperfecta (OI) type VII. We investigated the pathogenic mechanisms of CRTAP variants through functional studies on bones of patients with OI. METHODS: Two nonconsanguineous families with CRTAP mutations were included and their phenotypes and genotypes were evaluated. Bone specimens were obtained from 1 patient with OI and a normal control during orthopedic surgery. The impacts of the novel variant on the CRTAP transcript were confirmed. The expression levels of CRTAP mRNA and CRTAP protein were analyzed. The quantification of prolyl 3-hydroxylation in the α1 chain of type I collagen was evaluated. RESULTS: Patients with OI type VII had early-onset recurrent fractures, severe osteoporosis, and bone deformities. The c.621 + 1G > A and c.1153-3C > G mutations were identified in CRTAP in the patients with OI. The c.621 + 1G > A variant was a novel mutation that could impair mRNA transcription, leading to a truncated CRTAP protein. In a patient with c.621 + 1G > A and c.1153-3C > G mutations in CRTAP, the mRNA and protein levels of CRTAP in osteoblasts were significantly decreased and the osteoid volume and osteoblast numbers were markedly reduced compared with those in the normal control individual. This was simultaneously accompanied by significantly reduced prolyl 3-hydroxylation at Pro986 in the α1 chain of type I collagen and invisible active bone formation in bone. CONCLUSION: The novel c.621 + 1G > A mutation in CRTAP expands the genotypic spectrum of type VII OI. Biallelic mutations of c.621 + 1G > A and c.1153-3C > G in CRTAP can lead to reduced CRTAP mRNA and deficient CRTAP protein in osteoblasts, which reduces 3-hydroxylation in Pro986 of the α1 chain of type I collagen and impairs bone formation, thus contributing to severe OI type VII.


Assuntos
Proteínas da Matriz Extracelular , Chaperonas Moleculares , Osteogênese Imperfeita , Fenótipo , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Masculino , Feminino , Chaperonas Moleculares/genética , Mutação , Criança , Linhagem , Pré-Escolar , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Genótipo , Osteoblastos/metabolismo , Osteoblastos/patologia , Cadeia alfa 1 do Colágeno Tipo I , Adulto , Adolescente
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005273

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases of the respiratory system in the clinic. The disease has a long course and is difficult to cure, which seriously threatens human health. Airway mucus hypersecretion (AMH) is an independent risk factor for COPD and has a significant impact on the development and prognosis of the disease. The review finds that the abnormal proliferation of goblet cells and the excessive secretion of mucin are the direct causes of AMH. The pathogenesis of AMH may be closely related to the inhalation of heterogeneous particles, airway inflammation, the imbalance of mucin/water salt ratio, and the regulation of related signaling pathways. Traditional Chinese medicine (TCM) believes that AMH of COPD belongs to the category of lung distension with phlegm-fluid retention syndrome, and the disease is mainly treated from phlegm on the basis of lung distension. This article summarizes the relevant research in the field of TCM in recent years and finds that the single TCM that effectively intervened AMH of COPD is mainly phlegm-resolving TCM, and the main active ingredients of TCM are flavonoids, terpenoids, phenols, and alkaloids. The main TCM compounds are mainly designed to remove heat-phlegm, warmly resolve cold-phlegm, dry dampness to eliminate phlegm, invigorate Qi, promote blood circulation and dispel phlegm, and invigorate lung, spleen, and kidney. Its mechanism of action may be direct inhibition or indirect inhibition of airway epithelial goblet cell metaplasia and mucin expression by inhibiting airway inflammation, regulating aquaporins to correct the imbalance of mucin/water salt ratio, and regulating signaling pathways, so as to reduce mucus oversecretion in COPD. However, there are still some problems. For example, the research mainly focuses on TCM compounds instead of the single TCM or its effective components. The research on the mechanism of action is not thorough enough, and the research results are not interoperable. The clinical transformation rate of basic research is insufficient. This article systematically reviews the research status of AMH in the treatment of COPD with TCM and puts forward some thoughts on the existing problems, so as to provide a reference for clinical rational medication and in-depth research.

18.
Front Plant Sci ; 14: 1264567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046597

RESUMO

Rhizoctonia solani as a cosmopolitan fungus is the causative agent of many crop diseases and leads to significant economic losses in crop production. To explore the toxin structure and physiological activity of R. solani AG-3 TB, high-performance liquid chromatography (HPLC), infrared absorption spectrum (IR), and nuclear magnetic resonance spectrum (NMR) were required. Here, the compound (methoxymethyl)triphenylphosphonium chloride (MMC) with the molecular formula C20H20ClOP was purified and identified from R. solani AG-3 TB. The pure compound MMC treated at 20 µg/mL, 50 µg/mL, and 100 µg/mL can cause obvious necrosis on leaves, increase active oxygen species (AOS), decrease chlorophyll content, and damage cellular structure. The results enrich the understanding of toxin compounds for R. solani and provide valuable insights into the toxicology of R. solani AG-3 TB.

19.
Infect Med (Beijing) ; 2(3): 153-166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38073883

RESUMO

Mpox (monkeypox) virus (MPXV), which causes a mild smallpox-like disease, has been endemic in Africa for several decades, with sporadic cases occurring in other parts of the world. However, the most recent outbreak of mpox mainly among men that have sex with men has affected several continents, posing serious global public health concerns. The infections exhibit a wide spectrum of clinical presentation, ranging from asymptomatic infection to mild, severe disease, especially in immunocompromised individuals, young children, and pregnant women. Some therapeutics and vaccines developed for smallpox have partial protective and therapeutic effects against MPXV historic isolates in animal models. However, the continued evolution of MPXV has produced multiple lineages, leading to significant gaps in the knowledge of their pathogenesis that constrain the development of targeted antiviral therapies and vaccines. MPXV infections in various animal models have provided a central platform for identification and comparison of diseased pathogenesis between the contemporary and historic isolates. In this review, we discuss the susceptibility of various animals to MPXV, and describe the key pathologic features of rodent, rabbit and nonhuman primate models. We also provide application examples of animal models in elucidating viral pathogenesis and evaluating effectiveness of vaccine and antiviral drugs. These animal models are essential to understand the biology of MPXV contemporary isolates and to rapidly test potential countermeasures. Finally, we list some remaining scientific questions of MPXV that can be resolved by animal models.

20.
Front Pediatr ; 11: 1291609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089682

RESUMO

Background: Dilated cardiomyopathy (DCM) is a rare disease that causes heart failure due to malfunction of the heart muscle characterized by left ventricular dilation and poor systolic function. Genetic screening leads to advantages in early diagnosis and prognostic assessment of patients with suspected inherited cardiomyopathies. Here, we report a case of neonatal dilated cardiomyopathy due to a mutation of the TNNI3 gene, which has not been published in neonatal dilated cardiomyopathy before. Case presentation: The patient was a 22-day-old newborn boy with poor ability to respond to stimuli, presenting with shortness of breath over 11 days. He presented with irregular fever, tachypnea, difficulty in ventilator withdrawal, and mild edema of both lower limbs, and III/6SM could be heard in the precardiac area. He presented repeated weaning difficulties during hospitalization with intractable low EF heart insufficiency. Doppler echocardiography showed refractory low ejection fraction, cardiac enlargement, cardiac insufficiency, mild pulmonary hypertension, and mitral and tricuspid insufficiency with mild valve regurgitation. Whole-exome sequencing showed a mutation in the TNNI3 gene, c. 544G>A (p.Glu182Lys). Thus, he was diagnosed with neonatal DCM. There was no mutation in the parents, the child died 2 weeks after discharge. Conclusions: TNNI3 mutation is a novel likely pathogenic mechanism of neonatal dilated cardiomyopathy. Therefore, systematic use of diagnostic tools, advanced risk models, and a deeper understanding of the mechanism are required to reduce morbidity and mortality in this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...