Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.713
Filtrar
1.
BMC Genomics ; 25(1): 695, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009980

RESUMO

BACKGROUND: Effective population size (Ne) is a pivotal parameter in population genetics as it can provide information on the rate of inbreeding and the contemporary status of genetic diversity in breeding populations. The population with smaller Ne can lead to faster inbreeding, with little potential for genetic gain making selections ineffective. The importance of Ne has become increasingly recognized in plant breeding, which can help breeders monitor and enhance the genetic variability or redesign their selection protocols. Here, we present the first Ne estimates based on linkage disequilibrium (LD) in the pea genome. RESULTS: We calculated and compared Ne using SNP markers from North Dakota State University (NDSU) modern breeding lines and United States Department of Agriculture (USDA) diversity panel. The extent of LD was highly variable not only between populations but also among different regions and chromosomes of the genome. Overall, NDSU had a higher and longer-range LD than the USDA that could extend up to 500 Kb, with a genome-wide average r2 of 0.57 (vs 0.34), likely due to its lower recombination rates and the selection background. The estimated Ne for the USDA was nearly three-fold higher (Ne = 174) than NDSU (Ne = 64), which can be confounded by a high degree of population structure due to the selfing nature of pea. CONCLUSIONS: Our results provided insights into the genetic diversity of the germplasm studied, which can guide plant breeders to actively monitor Ne in successive cycles of breeding to sustain viability of the breeding efforts in the long term.


Assuntos
Desequilíbrio de Ligação , Pisum sativum , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Pisum sativum/genética , Genoma de Planta , Melhoramento Vegetal/métodos , Genética Populacional , Variação Genética
2.
J Agric Food Chem ; 72(28): 15875-15889, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957928

RESUMO

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Lactobacillus , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Lactobacillus/metabolismo , Lactobacillus/genética , Pisum sativum/química , Pisum sativum/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Proteômica , Adulto , Masculino , Feminino , Adulto Jovem , Bebidas/análise , Bebidas/microbiologia
3.
Int J Biol Macromol ; : 133949, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025172

RESUMO

Different methods of starch modification have been proposed to broaden its application. In this study, the effects of ternary mixtures of natural crosslinking agents: chitosan-betaine-vanillin and gelatin-betaine-vanillin on the properties of pea starch were explored. These combinations of substances were selected because they have complementary crosslinking mechanisms. The effects of the ternary crosslinker mixtures on the gelatinization, mechanical properties, thermal stability, and microstructure of pea starch were compared. Both combinations of crosslinkers enhanced the gelatinization viscosity, viscoelasticity, gel hardness, and thermal stability of the pea starch, by an amount that depended on the ratio of the different components in the ternary mixtures. In all cases, the crystal structure of the starch granules disappeared after gelatinization. The modified starch had a more compact and uniform microstructure than the non-modified version, especially when it was crosslinked by vanillin, gelatin, and betaine. The improvement in the gelation properties of the starch were primarily attributed to hydrogen bonding, electrostatic attraction, and Schiff base crosslinking of the various components present. Gelatin enhanced the gel strength more than chitosan, which was probably because of greater hydrogen bonding. Our findings suggest that the properties of starch can be enhanced by adding ternary mixtures of natural crosslinkers.

4.
Int J Food Microbiol ; 422: 110807, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38970999

RESUMO

This study examined the inactivation of spores of Bacillus licheniformis and Bacillus subtilis in four pea-based milk alternatives, semi-skimmed bovine milk and Brain Heart Infusion (BHI) broth to assess the matrix impact on the thermal inactivation of bacterial spores. Heat inactivation was performed with the method of capillary tubes in temperature range 97-110 °C. A four-parameter non-linear model, including initial level, shoulder duration, inactivation rate and tailing, was fitted to the data obtained. D-values were estimated and secondary ZT-value models were developed for both species. A secondary model for the shoulder length of B. licheniformis in a plant-based milk alternative formulation was built too. Models were validated at a higher temperature, 113.5 °C. D-values in the different matrices ranged between 2.3 and 8.2 min at 97 °C and 0.1-0.3 min at 110 °C for B. licheniformis. D-values for B. subtilis ranged between 3.9 and 6.3 min at 97 °C and 0.2-0.3 min at 110 °C. ZT-values in the different matrices ranged between 7.3 and 8.9 °C and 8.9-10.0 °C for B. licheniformis and B. subtilis, respectively. Significant differences in inactivation parameters were found within the pea-based formulations as well as when compared to bovine milk. Heat resistance was higher in pea-based matrices. Shoulders observed were temperature- and matrix-dependent, while no such trend was found for the tailings. These results provide insights, useful on designing safe thermal processing, limiting spoilage in plant-based milk alternatives and thus, reducing global food waste.

5.
Food Chem ; 459: 140381, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38991441

RESUMO

This study investigated the interaction between pea protein amyloid-like nanofibril and epigallocatechin gallate, constructed and characterized the novel pea protein nanofibrils-derived hydrogel mediated by epigallocatechin gallate, and researched the functionalities of the hydrogel. Epigallocatechin gallate remodeled the structure of pea protein nanofibrils, and a stable and strong hydrogel was formed at a relatively low protein concentration (4.5%). Additionally, the hydrogels exhibited various surface structures and hydrogel properties dependent on the mass ratio. Strongest gel strength (51 g) was attained at 0.25 epigallocatechin gallate/pea protein nanofibrils mass ratio. Whereas, the hydrogels exhibited the highest water holding capacity (87%) at 0.05 mass ratio. The primary driving forces in the formation and maintaining of the hydrogels were hydrophobic interactions and ionic bonds. Progressive rise of ß-sheet content of pea protein nanofibrils occurred increasing epigallocatechin gallate concentration. This hydrogel holds great potential for applications in food processing, targeted delivery of nutraceuticals and biomedicine.

6.
Int J Biol Macromol ; 276(Pt 1): 133736, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992543

RESUMO

Pea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule. The results indicated that the utilization of maltodextrin and gum tragacanth significantly improves the storage stability and antioxidant activity of pea peptides. Moreover, optimal storage stability for pea peptides was achieved with a polysaccharide ratio of 9:1, a glycopeptide ratio of 10:1, a solid-liquid ratio of 4:40, and an inlet temperature of 180 °C. After 60 days of storage, the encapsulated pea peptides maintained 70.22 %, 25.19 %, and 40.32 % for scavenging abilities to hydroxyl radical, superoxide anion, and ABTS radical, respectively. In contrast, the unencapsulated pea peptides showed a decline to 47.02 %, 0 %, and 24.46 % in the same antioxidant activities after storage. These findings underscore the potential of spray drying technology to enhance the functional properties of pea peptides for various applications.

7.
J Food Sci ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980959

RESUMO

The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties. Results revealed the significant impact of emulsifier addition on microcapsule parameters. Powders lacking emulsifiers exhibited higher water solubility (57.10%-81.41%) compared to those with emulsifiers (24.64%-40.13%). Moreover, the emulsifier significantly decreased thermal stability (e.g., without emulsifier, Ton = 137.21°C; with emulsifier, Ton = 41.55°C) and adversely impacted encapsulation efficiency (highest efficiency achieved: 67%; with emulsifier: 21%).

8.
Appl Radiat Isot ; 212: 111423, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38981165

RESUMO

The dose effect of radiation has long been a topic of concern, but the molecular mechanism behind it is still unclear. In this study, dried pea seeds were irradiated with 252Cf fission neutron source. Through analyzing the transcriptome and proteome of M1 generation pea (Pisum sativum L.) leaves, we studied the molecular rule and mechanism of neutron dose effect. Our results showed three important rules of global gene expression in the studied dose range. The rule closely related to the neutron absorbed dose at the transcription and translation levels is: the greater the difference in neutron absorbed dose between two radiation treatment groups, the greater the difference in differential expression between the two groups and the control group. We also obtained important sensitive metabolic pathways of neutron radiation, as well as related key genes. Furthermore, the overall molecular regulation mechanism of dose effect was revealed based on the main functional items obtained. Our research results can be applied to appropriate radiation dose estimation and agricultural production practice.

9.
Nutrients ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999765

RESUMO

Animal-sourced whey protein (WPr) is the most popular protein supplement among consumers and has been shown to improve muscle mass and strength. However, due to allergies, dietary restrictions/personal choices, and growing demand, alternative protein sources are warranted. Sedentary adults were randomized to pea protein (PPr) or WPr in combination with a weekly resistance training program for 84 days. Changes in whole-body muscle strength (WBMS) including handgrip, lower body, and upper body strength, body composition, and product perception were assessed. The safety outcomes included adverse events, vital signs, clinical chemistry, and hematology. There were no significant differences in the change in WBMS, muscle mass, or product perception and likability scores between the PPr and WPr groups. The participants supplemented with PPr had a 16.1% improvement in WBMS following 84 days of supplementation (p = 0.01), while those taking WPr had an improvement of 11.1% (p = 0.06). Both study products were safe and well-tolerated in the enrolled population. Eighty-four days of PPr supplementation resulted in improvements in strength and muscle mass comparable to WPr when combined with a resistance training program in a population of healthy sedentary adults. PPr may be considered as a viable alternative to animal-sourced WPr without sacrificing muscular gains and product enjoyment.


Assuntos
Suplementos Nutricionais , Força Muscular , Músculo Esquelético , Proteínas de Ervilha , Treinamento Resistido , Comportamento Sedentário , Humanos , Masculino , Feminino , Adulto , Proteínas de Ervilha/administração & dosagem , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Pessoa de Meia-Idade , Adulto Jovem , Composição Corporal , Força da Mão
10.
Food Chem X ; 23: 101518, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38952562

RESUMO

The focus on sustainable utilization of agricultural waste is currently a leading area of scientific research, driving significant advancements in technology and circular economy models. The fundamental capacity of bio-based products, bioprocessing techniques, and the crucial involvement of microbial treatments are opening opportunities for efficient solutions in various industries. One of the most popular green vegetables, peas are members of the Fabaceae family and have a pod-like structure. Every year, a significant amount of pea pods is discarded as waste products of peas that have negative impacts on our environment. In this comprehensive review, we explore innovative methods for utilizing pea pods to minimize their environmental footprint and optimize their viability across multiple industries. A large portion of the pea processing industry's output consists of pea pods. Variety of proteins, with major classes being globulin and albumin (13%), dietary fiber (43-58%), and minerals are abundant in these pods. Because of their diverse physiochemical properties, they find applications in many diverse fields. The porous pea pods comprised cellulose (61.35%) and lignin (22.12%), which could make them superior adsorbents. The components of these byproducts possess valuable attributes that make them applicable across treatment of wastewater, production of biofuels, synthesis of biocolors, development of nutraceuticals, functional foods, and enzymes for the textile industry, modification of oil, and inhibition of steel corrosion.

11.
J Thorac Dis ; 16(6): 3540-3552, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983143

RESUMO

Background: In operable chronic thromboembolic pulmonary hypertension (CTEPH) patients, the utilization of bridging therapy with targeted medications prior to pulmonary endarterectomy (PEA) remains a topic of controversy, despite being common in cases of severe hemodynamic impairment. This study aims to assess the impact of riociguat as a bridging therapy on postoperative hemodynamics and outcomes. Methods: We conducted a retrospective study involving patients undergoing PEA from December 2016 to November 2023. Patients were categorized into two groups based on the use of riociguat before PEA. Pulmonary vascular resistance (PVR) following riociguat administration was assessed pre-PEA. Postoperative outcomes, including mortality, complications, and hemodynamics, were compared, employing propensity score matching analysis. Results: Among the patients, 41.8% (n=56) received riociguat as bridging therapy. In patients with PVR ≥800 dynes·sec·cm-5, riociguat resulted in a reduction in PVR {1,207 [974-1,698] vs. 1,125 [928-1,486] dynes·sec·cm-5, P<0.01}, while no significant difference was observed in patients with PVR <800 dynes·sec·cm-5 {641 [474-740] vs. 600 [480-768] dynes·sec·cm-5, P=0.46}. After propensity score matching, each group included 26 patients. The overall perioperative mortality rate was 2.6%. Postoperative PVR {326 [254-398] vs. 361 [290-445] dynes·sec·cm-5, P=0.35} was similar in the riociguat group compared to the control group. The incidence of residual pulmonary hypertension (PH) and other postoperative outcomes were also comparable. Conclusions: The use of riociguat as bridging therapy demonstrated hemodynamic improvement before PEA in patients with high preoperative PVR. However, no additional benefits in postoperative mortality or hemodynamics were observed.

12.
Cureus ; 16(6): e61987, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38983981

RESUMO

Epiploic appendagitis (EA) is an ischemic infarction of an epiploic appendage due to torsion or spontaneous thrombosis of the central vein of an epiploic appendage. It is a rare but benign and self-limiting cause of abdominal pain that is often misdiagnosed. The typical presentation of EA is lower abdominal pain, but pain can also occur in other parts of the abdomen. Presentation outside of the abdomen is a rare occurrence. Our patient presented with chest pain, and it was only through physical examination that mild right upper quadrant tenderness led to the suspicion of an intra-abdominal pathology, which was then confirmed with imaging. The patient responded to conservative management. Our possible explanation for this occurrence includes the proximity of the inflamed appendage to organs associated with chest pain and the possibility that patients sometimes describe pain location inaccurately.

13.
J Agric Food Chem ; 72(28): 15890-15905, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953212

RESUMO

Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Aromatizantes/metabolismo , Aromatizantes/química , Feminino , Masculino , Adulto , Bebidas/análise , Bebidas/microbiologia
14.
Biofabrication ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996408

RESUMO

Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering (TE) concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.

15.
Foods ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998476

RESUMO

To learn more about the nutritional composition and health benefits for human consumers of peas, we used a widely targeted metabolomics-based approach to reveal the metabolite components from three main varieties, and a total of 1095 metabolites were identified. A comparison of 487 differentially accumulated metabolites shared among three varieties of fresh and dried peas found most of the amino acids and derivatives were downregulated and most of the lipids and flavonoids were upregulated in dried peas. Furthermore, comparing the main nutrient profiles exclusively showed that there were few differences in free fatty acids, sugars, vitamins, and alkaloids between dried and fresh peas. Peas are especially enriched with B-group vitamins. Through detailed identification and classification, the flavonoid pathway of peas was revealed; a variety of glycosylated derivatives from kaempferol, quercetin, and luteolin were confirmed to be abundant in peas. It was also found that isoflavones are richer in peas than in many other plants, and putatively the isoflavone synthesis pathway originates from liquiritigenin and naringenin. Our study not only offers guidance for understanding the nutritional components of peas, but also provides the basis for healthy diet analysis of the edible value and health benefits of peas.

16.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998558

RESUMO

The aim of this study was to prepare and characterize stable non-covalent ternary complexes based on pea protein (PP, 0.5%), hyaluronic acid (HA, 0.125%), and chlorogenic acid (CA, 0~0.03%). The ternary complexes were comprehensively evaluated for physicochemical attributes, stability, emulsifying capacities, antioxidant properties, and antimicrobial efficacy. PP-HA binary complexes were first prepared at pH 7, and then CA was bound to the binary complexes, as verified by fluorescence quenching. Molecular docking elucidated that PP interacted with HA and CA through hydrogen bonding, hydrophobic and electrostatic interactions. The particle size of ternary complexes initially decreased, then increased with CA concentration, peaking at 0.025%. Ternary complexes demonstrated good stability against UV light and thermal treatment. Emulsifying activity of complexes initially decreased and then increased, with a turning point of 0.025%, while emulsion stability continued to increase. Complexes exhibited potent scavenging ability against free radicals and iron ions, intensifying with higher CA concentrations. Ternary complexes effectively inhibited Staphylococcus aureus and Escherichia coli, with inhibition up to 0.025%, then decreasing with CA concentration. Our study indicated that the prepared ternary complexes at pH 7 were stable and possessed good functionality, including emulsifying properties, antioxidant activity, and antibacterial properties under certain concentrations of CA. These findings may provide valuable insights for the targeted design and application of protein-polysaccharide-polyphenol complexes in beverages and dairy products.

17.
Foods ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998605

RESUMO

Peas (Pisum sativum L.) serve as a significant source of plant-based protein, garnering consumer attention due to their high nutritional value and non-GMO modified nature; however, the beany flavor limits its applicability. In this study, the effects of Bifidobacterium animalis subsp. Lactis 80 (Bla80) fermentation on the physicochemical characteristics, particle size distribution, rheological properties, and volatile flavor compounds of pea milk was investigated. After fermentation by Bla80, the pH of pea milk decreased from 6.64 ± 0.01 to 5.14 ± 0.01, and the (D4,3) distribution decreased from 142.4 ± 0.47 µm to 122.7 ± 0.55 µm. In addition, Lactic acid bacteria (LAB) fermentation significantly reduced the particle size distribution of pea milk, which was conducive to improving the taste of pea milk and also indicated that Bla80 had the probiotic potential of utilizing pea milk as a fermentation substrate. According to GC-MS analysis, 64 volatile compounds were identified in fermented pea milk and included aldehydes, alcohols, esters, ketones, acids, and furans. Specifically, aldehydes in treated samples decreased by 27.36% compared to untreated samples, while esters, ketones, and alcohols increased by 11.07%, 10.96%, and 5.19%, respectively. These results demonstrated that Bla80 fermentation can significantly decrease the unpleasant beany flavor, such as aldehydes and furans, and increase fruity or floral aromas in treated pea milk. Therefore, Bla80 fermentation provides a new method to improve physicochemical properties and consumer acceptance of fermented pea milk, eliminating undesirable aromas for the application of pea lactic acid bacteria beverage.

18.
J Nutr ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019167

RESUMO

BACKGROUND: protein influences acute postprandial-glucose and -insulin responses but the effects of dose, protein-type and health-status are unknown. OBJECTIVE: to determine the acute effect of adding protein to carbohydrate on postprandial responses and identify effect modifiers. METHODS: we searched MEDLINE, EMBASE and Cochrane databases through 30 July 2023 for acute, crossover trials comparing acute postprandial-responses elicited by carbohydrate-containing test-meals with vs without added protein in adults without-diabetes or with type-2 (T2DM) or type-1 (T1DM) diabetes. Group data were pooled separately using generic inverse-variance with random-effects models and expressed as ratio-of-means with [95% CIs]. Risk-of-bias and certainty-of-evidence (GRADE) were assessed. RESULTS: in 154 trial-comparisons of animal-, dairy- and plant-proteins (without-diabetes, n=22,67,32; T2DM, n=14,16,3), each gram-protein/gram-carbohydrate (g/g) reduced glucose-area-under-the-curve (AUC) less in T2DM than in those without-diabetes (-10% vs -50%, P<0.05) but increased insulin-AUC similarly (+76 vs +56%, respectively). In subjects without-diabetes, each g/g of dairy- and plant-proteins reduced glucose-AUC by 52 and 55% and increased insulin-AUC by 64 and 45% (all P<0.05). Animal-proteins significantly reduced glucose-AUC by 31% and increased insulin-AUC by 37% (pooled effects), but without a significant dose-response. In T2DM animal-protein reduced glucose-AUC by 13% and increased insulin-AUC by 105%, with no significant dose-response. Dairy-protein reduced glucose-AUC by 18% (no dose-response), but each g/g increased insulin-AUC by 34% (P<0.05). In T1DM protein increased glucose-AUC by 40% (P<0.05, n=5). Data-source (reported vs calculated) and study-methodology-quality significantly modified some outcomes and contributed to high between-study heterogeneity. CONCLUSIONS: in people without-diabetes, adding dairy- or plant-protein to a carbohydrate-containing meal elicits physiologically significant reductions in glucose-AUC and increases insulin-AUC. Animal-protein may slightly reduce glucose-AUC and may increase insulin-AUC. In T2DM, protein may not have such large and consistent effects. Further research is needed to determine if the effects of protein differ by health status and protein-source. REGISTRATION: PROSPERO CRD42022322090. FUNDING: General Mills.

19.
Curr Res Food Sci ; 8: 100775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840808

RESUMO

Hydrocolloids have proven effective in improving the texture of surimi gels, yet their application in plant-based seafood analogues remains underexplored. This study aimed to develop a hydrocolloid blend comprising methylcellulose (MC), curdlan gum (CG), and high-acyl gellan gum (GG) to achieve a surimi-like texture in plant-based fish cakes (PBFC) made from brown rice and pea protein isolates. The research showcased that higher MC concentration boosted protein powder's heated oil holding capacity, while CG concentration increments lowered it. However, heated water holding capacity remained stable despite changes in MC and GG levels. Incorporating hydrocolloids elevated PBFC moisture content, decreasing expressible moisture and oil amounts with rising MC, CG and GG concentrations. PBFC hardness increased with higher hydrocolloid levels and was influenced by temperature, while springiness remained unaffected. GG helped maintain storage modulus (G') during PBFC cooling at higher concentrations, whereas the opposite effect was observed for MC. Analytically, higher MC concentrations reduced protein digestibility, while increased GG concentrations appeared to enhance it. Microstructural analysis corroborated these findings, with more protein aggregates in PBFC containing 3.8% MC and fewer in PBFCs with 6% CG and 3% GG. Consumer evaluations indicated that PBFC formulated with 1% MC, 3% CG, and 1.5% GG matched the springiness of commercial surimi-tofu fish cake, though it received slightly lower overall liking scores. In conclusion, the combined use of these three hydrocolloids demonstrated the potential to enhance the physical properties of PBFC and modify protein digestibility, offering insights into the development of innovative plant-based seafood analogues.

20.
Food Chem X ; 22: 101484, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38846798

RESUMO

Butterfly pea is a natural color source used in food and dessert. This study optimized ultrasound-assisted extraction with ethanol for pigments from butterfly pea flowers (BPF) using a Box-Behnken method. Key factors explored were solid-to-solvent ratio, ultrasound extraction time, and ethanol concentration. The extracted compounds were evaluated for extraction yield (EY), total phenolic content (TPC), total anthocyanin content (TAC), and DPPH antioxidant activity. EY increased significantly with reduced ethanol concentration. Optimal conditions were predicted and experimentally validated. BPF extracts showed distinct absorption wavelengths at different pH levels. BPF extract was used in coconut milk jelly, resulting in the lowest b* value. These findings highlight the value of optimal ultrasonic-assisted extraction for enhancing BPF's natural colorant extraction and promoting sustainable use in food and dessert applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...