Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mar Drugs ; 21(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37755094

RESUMO

Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.

2.
J Biomol Struct Dyn ; : 1-19, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608559

RESUMO

Prolyl specific oligopeptidase (POP), is one of the highly expressed enzymes in the brain and is a prime target to treat disorders related to the central nervous system. Here, we describe the structure-based design of the tacrine derivatives, selective, and brain-permeable POP inhibitors. These compounds inactivate POP in-vitro specifically and sustainably at very low concentrations (nano molar). Among this series, compound 6b (IC50 = 0.81 ± 0.04 µM) exhibited most potent inhibition. Furthermore, kinetic study revealed that these molecules target active site of POP which is further confirmed by in-silico molecular interaction analysis. The computational docking results indicates that the compounds are well fitted in the active site with high binding score (i.e., > -7 to > -4 kcal/mol) where Trp595, Arg643, Tyr473, and Ser554 plays important role in binding with the active compounds. The molecular dynamic simulation of most active compounds (6a, 6b, 6d, and 6f) displayed higher free energy binding, when compared to the standard drug in MM-PBSA based binding free energy calculation. In addition, the predicted pharmacokinetic profile suggests that these compounds can serve as excellent inhibitors upon additional optimization which makes them prime choice for further investigation.Communicated by Ramaswamy H. Sarma.

3.
Expert Opin Drug Discov ; 18(5): 563-573, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073444

RESUMO

INTRODUCTION: Prepilin peptidases (PPP) are essential enzymes for the biogenesis of important virulence factors, such as type IV pili (T4P), type II secretion systems, and other T4P-related systems of bacteria and archaea. PPP inhibitors could be valuable pharmaceuticals, but only a few have been reported. Interestingly, PPP share similarities with presenilin enzymes from the gamma-secretase protease complex, which are linked to Alzheimer's disease. Numerous gamma-secretase inhibitors have been reported, and some have entered clinical trials, but none has been tested against PPP. OBJECTIVE: The objective of this study is to develop a high-throughput screening (HTS) method to search for inhibitors of PPP from various chemical libraries and reported gamma-secretase inhibitors. METHOD: More than 15,000 diverse compounds, including 13 reported gamma-secretase inhibitors and other reported peptidase inhibitors, were screened to identify potential PPP inhibitors. RESULTS: The authors developed a novel screening method and screened 15,869 compounds. However, the screening did not identify a PPP inhibitor. Nevertheless, the study suggests that gamma-secretase is sufficiently different from PPP that specific inhibitors may exist in a larger chemical space. CONCLUSION: The authors believe that the HTS method that they describe has numerous advantages and encourage others to consider its application in the search for PPP inhibitors.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Inibidores de Proteases/farmacologia , Eucariotos , Proteínas de Fímbrias/uso terapêutico , Presenilinas/química , Presenilinas/uso terapêutico , Doença de Alzheimer/tratamento farmacológico
4.
Biomed Pharmacother ; 161: 114561, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934556

RESUMO

AIMS: To assess the comparative effects of glucagon-like peptide-1 receptor agonists (GLP-1RA), 4-dipeptidyl peptidase inhibitors (DPP-4I), and metformin treatment during one year on metabolic syndrome (MetS) components and severity in MetS patients. METHODS: Prospective study (n = 6165 adults) within the frame of PREDIMED-Plus trial. The major end-point was changes on MetS components and severity after one- year treatment of GLP-1RA, DPP-4I, and metformin. Anthropometric measurements (weight, height and waist circumference), body mass index (BM), and blood pressure were registered. Blood samples were collected after overnight fasting. Plasma glucose, glycosylated hemoglobin (HbA1c), plasma triglycerides and cholesterol were measured. Dietary intakes as well as physical activity were assessed through validated questionnaires. RESULTS: MetS parameters improved through time. The treated groups improved glycaemia compared with untreated (glycaemia ∆ untreated: -1.7 mg/dL(± 13.5); ∆ metformin: - 2.5(± 23.9) mg/dL; ∆ DPP-4I: - 4.5(± 42.6); mg/dL ∆ GLP-1RA: - 4.3(± 50.9) mg/dL; and HbA1c: ∆ untreated: 0.0(± 0.3) %; ∆ metformin: - 0.1(± 0.7) %; ∆ DPP-4I: - 0.1(± 1.0) %; ∆ GLP-1RA: - 0.2(± 1.2) %. Participants decreased BMI and waist circumference. GLP-1RA and DPP-4I participants registered the lowest decrease in BMI (∆ untreated: -0.8(± 1.6) kg/m2; ∆ metformin: - 0.8(± 1.5) kg/m2; ∆ DPP-4I: - 0.6(± 1.3) kg/m2; ∆ GLP-1RA: - 0.5(± 1.2) kg/m2. and their waist circumference (∆ untreated: -2.8(± 5.2) cm; ∆ metformin: - 2.6(± 15.2) cm; ∆ DPP-4I: - 2.1(± 4.8) cm; ∆ GLP-1RA: - 2.4(± 4.1) cm. CONCLUSION: In patients with MetS and healthy lifestyle intervention, those treated with GLP-1RA and DPP-4I obtained better glycemic profile. Anthropometric improvements were modest.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Síndrome Metabólica , Metformina , Adulto , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Hemoglobinas Glicadas , Estudos Prospectivos , Peptídeo 1 Semelhante ao Glucagon , Dipeptidil Peptidases e Tripeptidil Peptidases
5.
Mar Drugs, v. 21, n. 9, 481, jul. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5125

RESUMO

Sea anemones are known to produce a diverse array of toxins with different cysteine-rich peptide scaffolds in their venoms. The serine peptidase inhibitors, specifically Kunitz inhibitors, are an important toxin family that is believed to function as defensive peptides, as well as prevent proteolysis of other secreted anemone toxins. In this study, we isolated three serine peptidase inhibitors named Anthopleura cascaia peptide inhibitors I, II, and III (ACPI-I, ACPI-II, and ACPI-III) from the venom of the endemic Brazilian sea anemone A. cascaia. The venom was fractionated using RP-HPLC, and the inhibitory activity of these fractions against trypsin was determined and found to range from 59% to 93%. The spatial distribution of the anemone peptides throughout A. cascaia was observed using mass spectrometry imaging. The inhibitory peptides were found to be present in the tentacles, pedal disc, and mesenterial filaments. We suggest that the three inhibitors observed during this study belong to the venom Kunitz toxin family on the basis of their similarity to PI-actitoxin-aeq3a-like and the identification of amino acid residues that correspond to a serine peptidase binding site. Our findings expand our understanding of the diversity of toxins present in sea anemone venom and shed light on their potential role in protecting other venom components from proteolysis.

6.
Genes (Basel) ; 13(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36292739

RESUMO

The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.


Assuntos
Fasciola hepatica , Fasciola , Parasitos , Animais , Fasciola/genética , Fasciola hepatica/genética , Peptídeo Hidrolases/genética , Virulência , Proteoma , Estágios do Ciclo de Vida , Inibidores de Proteases , Catepsinas
7.
Doctoral thesis. São Paulo: Escola Superior do Instituto Butantan; 2022. 219 p.
Tese em Português | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4735

RESUMO

Phylum Cnidaria comprises more than 10,000 species and around 10% of them are represented by sea anemones. These animals are underexplored sources of molecules, possessing structurally diverse toxins that can act over a diverse range of pharmacological targets, including enzymes. Sea anemones represent almost 96% of the manually annotated toxins from the phylum, but until now only 5% of its species have been studied about their toxin content. In the present work, the venoms of the sea anemones Anthopleura cascaia and Aulactinia veratra were studied and accessed through mass spectrometry analysis for searching serine peptidase inhibitors. The arsenal of toxins from both venoms was elucidated. Additionally, venom’s fractions were screened for inhibitory activity over trypsin, using time-course fluorescence-based kinetic assays or Mass spectrometry-based analysis. Beyond that, the spatial distribution of serine peptidase inhibitors in both sea anemones’ tissues were shown through Mass Spectrometry Imaging by MALDITOF. In the analysis of toxins composition, it was seen that A. cascaia venom presents at least three types of toxins: cytolysins, phospholipases and a toxin similar to natterin. For A. veratra, the classification based on blastp hit similarity and relying on domain architecture of the toxin’s sequences (translated transcripts) was performed. The thorough examination over toxins sequences led to the identification of 59 proteins and peptides belonging to 14 known toxin’s families of sea anemones and to the acknowledge of 20 peptides presenting 18 new cysteine scaffolds. The venom of this sea anemone mainly relies on neurotoxins from ShK-like, β-defensins, SCRiP, ICK, EGF-like types and on serine peptidase inhibitors from Kazal and Kunitz types. Furthermore, serine peptidase inhibitors from both venoms were isolated and present main distribution over tentacles, mesenterial filaments and pedal disc of these sea anemones, suggesting the preferential stock of these toxins. In conclusion, the methodological approaches applied in this study were able of identifying the presence of serine peptidase inhibitors on the venom and tissue of sea anemones through chromatographic techniques followed by enzymatic assays, and MALDI-Imaging.


O filo Cnidaria é composto por mais de 10.000 espécies e cerca de 10% destas são anêmonas-do-mar. Estes animais são considerados fontes subexploradas de moléculas, possuindo um diverso arsenal de toxinas que podem agir sobre diferentes alvos farmacológicos, incluindo enzimas. Toxinas de anêmonas-do-mar representam cerca de 96% das toxinas anotadas para o filo Cnidaria, embora apenas 5% de suas espécies tenham sido estudadas quanto à composição de toxinas até o momento. Neste trabalho elucidamos por espectrometria de massas a composição da peçonha das anêmonas Anthopleura cascaia e Aulactinia veratra, buscando a identificação de inibidores de serinopeptidases. O arsenal de toxinas para ambas anêmonas foi elucidado. Ainda, descrevemos as etapas de purificação envolvidas na busca de inibidores e a seleção destes candidatos por meio da inibição da atividade da tripsina, avaliada por duas técnicas distintas։ Cinética enzimática e Espectrometria de massas. Adicionalmente, descrevemos a localização de candidatos a inibidores no tecido das anêmonas através do Imageamento por espectrometria de massas. Na análise sobre a composição de toxinas destas anêmonas, vimos que a peçonha da A. cascaia apresentou a existência três tipos de toxinas incluindo citolisinas, fosfolipases e naterinas. Para a espécie A. veratra, a classificação de toxinas baseadas no blastp hit e na arquitetura de domínios das toxinas foi realizada. Esta análise revelou a presença de 59 proteínas e peptídeos pertencentes a 14 famílias de toxinas de anêmonasdo-mar; além do reconhecimento de 20 peptídeos apresentando 18 novos scaffolds de cisteínas. A peçonha desta anêmona é principalmente composto por neurotoxinas do tipo ShK-like, β-defensinas, SCRiP, ICK, EGF-like e inibidores de serinopeptidases. Os dados obtidos mostram que ambas anêmonas são ricas fontes de inibidores de serinopeptidases, especialmente tipo Kunitz e Kazal. Tais inibidores apresentam distribuição na região dos tentáculos, mesentério e disco pedal das anêmonas, o que pode indicar o estoque preferencial destas toxinas. E conclusão, o conjunto de abordagens metodológicas empregadas neste trabalho foi capaz de atender os objetivos propostos: identificar a presença de inibidores de serinopeptidases na peçonha e tecido de anêmonas, tanto por fracionamento cromatográfico seguido de ensaio enzimático, quanto por MALDI-Imaging.

8.
Mem. Inst. Oswaldo Cruz ; 117: e210386, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1365150

RESUMO

Chagas disease (CD) is an old neglected problem that affects more than 6 million people through 21 endemic countries in Latin America. Despite being responsible for more than 12 thousand deaths per year, the disease disposes basically of two drugs for its treatment, the nitroimidazole benznidazole and the nitrofuran nifurtimox. However, these drugs have innumerous limitations that greatly reduce the chances of cure. In Brazil, for example, only benznidazole is available to treat CD patients. Therefore, some proof-of-concept phase II clinical trials focused on improving the current treatment with benznidazole, also comparing it with repositioned drugs or combining them. Indeed, repositioning already marketed drugs in view of combating neglected tropical diseases is a very interesting approach in the context of decreased time for approval, better treatment options and low cost for development and implementation. After the introduction of human immunodeficiency virus aspartyl peptidase inhibitors (HIV-PIs) in the treatment of acquired immune deficiency syndrome (AIDS), the prevalence and incidence of parasitic, fungal and bacterial co-infections suffered a marked reduction, making these HIV-PIs attractive for drug repositioning. In this line, the present perspective presents the promising and beneficial data concerning the effects of HIV-PIs on the clinically relevant forms of Trypanosoma cruzi (i.e., trypomastigotes and amastigotes) and also highlights the ultrastructural and physiological targets for the HIV-PIs on this parasite. Therefore, we raise the possibility that HIV-PIs could be considered as alternative treatment options in the struggle against CD.

9.
Fungal Biol ; 125(5): 378-388, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910679

RESUMO

Candida haemulonii species complex (C. haemulonii, C. haemulonii var. vulnera and Candida duobushaemulonii) is composed by emerging and multidrug-resistant (MDR) yeasts. Candidiasis, the disease caused by these species, is difficult to treat and culminates in clinical failures and patient death. It is well-known that Candida peptidases play important roles in the fungus-host interactions, and hence these enzymes are promising targets for developing new antifungal drugs. Recently, serine-type peptidases were described in clinical isolates of C. haemulonii complex with the ability to cleave relevant key host proteins. Herein, the effects of serine peptidase inhibitors (SPIs) on the cell biology of this fungal complex were evaluated. Initially, eight distinct SPIs (phenylmethylsulfonyl fluoride - PMSF, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride - AEBSF, N-α-tosyl-l-lysine chloromethyl ketone hydrochloride - TLCK, N-p-tosyl-l-phenylalanine chloromethyl ketone - TPCK, simeprevir, boceprevir, danoprevir and telaprevir) were tested on the fungal growth. TPCK showed the best efficacy in controlling cell proliferation, being selected for the following experiments. This SPI induced changes in the architecture of yeast cells, as observed by scanning electron microscopy, besides injuries at the plasma membrane and reduction in the ergosterol content. TPCK also diminished the ability of yeasts to adhere to abiotic (polystyrene and glass) and biotic (murine macrophages) surfaces in a typically concentration-dependent manner. In addition, the 24 h-treatment of the mature biofilm promoted a decrease in biomass, viability and extracellular matrix. Altogether, our results highlight that SPIs may be promising new therapeutic agents in the treatment of candidiasis caused by emergent, opportunistic and MDR species forming the C. haemulonii complex.


Assuntos
Candida , Animais , Camundongos , Fenilalanina , Inibidores de Proteases , Serina , Tosilfenilalanil Clorometil Cetona
10.
J Enzyme Inhib Med Chem ; 35(1): 629-638, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32037904

RESUMO

Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.


Assuntos
Antifúngicos/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Macrófagos/efeitos dos fármacos , Phialophora/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Ácido Aspártico Proteases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Furanos , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/química , Humanos , Lopinavir/síntese química , Lopinavir/química , Lopinavir/farmacologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Phialophora/enzimologia , Phialophora/crescimento & desenvolvimento , Ritonavir/síntese química , Ritonavir/química , Ritonavir/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
11.
Curr Diabetes Rev ; 16(4): 279-292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31057118

RESUMO

The rising epidemic of type 2 diabetes mellitus & associated complications is a serious cause of concern for humanity. Glucagon-like peptide-1 receptor agonists commonly abbreviated as GLP-1 RAs, emerged as a promising therapeutic class based on incretin therapy that regulates glucose metabolism through multiple mechanisms. In the present study, various investigational & clinically used GLP-1 RAs have been reviewed with emphasis on their efficacy, structural modifications, adverse effects and toxicities. Various clinical trials justifying their efficacy have also been included, which highlighted the potential of GLP-1 RAs over conventional anti hyperglycaemic agents through a study of pooled effect on glycemic efficacy and weight-loss. The significant potency and appreciable safety of GLP-1 RAs manifested their potential as a logical approach for the management of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Redução de Peso/efeitos dos fármacos
12.
Front Microbiol ; 9: 1383, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008700

RESUMO

Fonsecaea pedrosoi is a dematiaceous fungus and the main causative agent of chromoblastomycosis that is a chronic disease usually affecting the human skin and subcutaneous tissues, which causes deformations and incapacities, being frequently refractory to available therapies. A typical globe-shaped, multiseptated and pigmented cells, known as sclerotic cells, are found in the lesions of infected individuals. In the present work, we have investigated the production of aspartic-type peptidase in F. pedrosoi sclerotic cells as well as the effect of peptidase inhibitors (PIs) on its enzymatic activity and viability. Our data showed that sclerotic cells are able to secrete pepstatin A-sensible aspartic peptidase when grown under chemically defined conditions. In addition, aspartic PIs (ritonavir, nelfinavir, indinavir, and saquinavir), which are clinically used in the HIV chemotherapy, significantly decreased the fungal peptidase activity, varying from 55 to 99%. Moreover, sclerotic cell-derived aspartic peptidase hydrolyzed human albumin, an important serum protein, as well as laminin, an extracellular matrix component, but not immunoglobulin G and fibronectin. It is well-known that aspartic peptidases play important physiological roles in fungal cells. With this task in mind, the effect of pepstatin A, a classical aspartic peptidase inhibitor, on the F. pedrosoi proliferation was evaluated. Pepstatin A inhibited the fungal viability in both cellular density- and drug-concentration manners. Moreover, HIV-PIs at 10 µM powerfully inhibited the viability (>65%) of F. pedrosoi sclerotic cells. The detection of aspartic peptidase produced by sclerotic cells, the parasitic form of F. pedrosoi, may contribute to reveal new virulence markers and potential targets for chromoblastomycosis therapy.

13.
Food Chem ; 264: 118-125, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29853355

RESUMO

The thermo-active serine peptidase aqualysin 1 (Aq1) of Thermus aquaticus was applied in bread making to study the relative contribution of thermoset gluten to bread crumb texture. Aq1 is active between 30 °C and 90 °C with an optimum activity temperature of around 65 °C. It is inhibited by wheat endogenous serine peptidase inhibitors during dough mixing and fermentation and starts hydrolyzing gluten proteins during baking above 80 °C when the enzyme is no longer inhibited and most of the starch is gelatinized and contributes to structure formation. Aq1 activity reduced the molecular weight of gluten proteins and significantly increased their extractability in sodium dodecyl sulfate containing medium. While it had no impact on the specific bread volume and only limited impact on hardness, cohesiveness, springiness, resilience and chewiness, it impacted bread crumb coherence. We conclude that starch has a greater impact on crumb texture than thermoset gluten.


Assuntos
Pão , Glutens/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Triticum/química , Fermentação , Farinha , Glutens/química , Glutens/farmacologia , Dureza , Hidrólise , Inibidores de Serina Proteinase/química , Amido/química , Amido/metabolismo , Temperatura , Thermus/enzimologia
14.
Planta ; 248(1): 197-209, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29675765

RESUMO

MAIN CONCLUSION: Seeds of native species from the rain forest (Amazon) are source of chitinases and their protein extracts exhibited strong and broad antifungal activity. Numerous plant species native to the Amazon have not yet been chemically studied. Studies of seeds are scarcer, since adversities in accessing study areas and seasonality pose constant hurdles to systematic research. In this study, proteins were extracted from seeds belonging to endemic Amazon species and were investigated for the first time. Proteolytic activity, peptidase inhibitors, and chitinases were identified, but chitinolytic activity predominated. Four proteins were purified through chromatography and identified as lectin and chitinases by MS/MS analyses. The proteins were examined for inhibition of a phytopathogen (Fusarium oxysporum). Analyses by fluorescence microscopy suggested binding of propidium iodide to DNA of fungal spores, revealing that spore integrity was lost when accessed by the proteins. Further structural and functional analyses of defensive proteins belonging to species facing highly complex ecosystems such as Amazonia should be conducted, since these could provide new insights into specificity and synergism involving defense proteins of plants submitted to a very complex ecosystem.


Assuntos
Antifúngicos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Sementes/química , Quitinases/isolamento & purificação , Quitinases/farmacologia , Eletroforese em Gel de Poliacrilamida , Fabaceae/química , Fusarium/efeitos dos fármacos , Lectinas/isolamento & purificação , Lectinas/farmacologia , Espectrometria de Massas , Microscopia de Fluorescência , Proteínas de Plantas/farmacologia , Proteômica , Floresta Úmida , Esporos Fúngicos/efeitos dos fármacos
15.
Acta Parasitol ; 63(1): 114-124, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29351078

RESUMO

Aspartyl-type peptidases are promising chemotherapeutic targets in protozoan parasites. In the present work, we identified an aspartyl peptidase activity from the soluble extract of Leishmania amazonensis promastigotes, which cleaved the fluorogenic peptide 7-methoxycoumarin-4-acetyl-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-D-Arg-amide (cathepsin D substrate) under acidic pH conditions at 37°C, showing a KM of 0.58 µM and Vmax of 129.87 fluorescence arbitrary units/s mg protein. The leishmanial aspartyl peptidase activity was blocked by pepstatin A (IC50 = 6.8 µM) and diazo-acetyl-norleucinemetilester (IC50 = 10.2 µM), two classical aspartyl peptidase inhibitors. Subsequently, the effects of 6 asymmetric peptidomimetics, containing L-tartaric acid core, were tested on both aspartyl peptidase and growth of L. amazonensis promastigotes. The peptidomimetics named 88, 154 and 158 promoted a reduction of 50% on the leishmanial aspartyl peptidase activity at concentrations ranging from 40 to 85 µM, whereas the peptidomimetic 157 was by far the most effective, presenting IC50 of 0.04 µM. Furthermore, the peptidomimetics 157 and 154 reduced the parasite proliferation in a dose-dependent manner, displaying IC50 values of 33.7 and 44.5 µM, respectively. Collectively, the peptidomimetic 157 was the most efficient compound able to arrest both aspartyl peptidase activity and leishmanial proliferation, which raises excellent perspectives regarding its use against this human pathogenic protozoan.


Assuntos
Antiprotozoários/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Leishmania/enzimologia , Leishmania/crescimento & desenvolvimento , Peptidomiméticos/metabolismo , Tartaratos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Temperatura
16.
Microbiol Res ; 205: 66-72, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942846

RESUMO

Trichosporon asahii is a fungal opportunistic pathogen that causes superficial and deep-seated infections presenting high mortality. Very little is known about the virulence attributes produced by this fungus. Herein, aspartic peptidase production was identified in Brazilian clinical isolates of T. asahii by different methodologies. Initially, T. asahii strain 250 (from skin lesion) was inoculated in both liquid and solid culture media containing bovine serum albumin (BSA) as the sole nitrogenous source. A translucent halo around the fungal colony was observed from the 5th day of culture. The cell-free culture supernatant revealed that soluble BSA was hydrolyzed along the growth, generating low molecular mass polypeptides as observed by electrophoresis. Subsequently, the secretions from four clinical strains of T. asahii were analyzed by BSA-SDS-PAGE and a single proteolytic band of 30-kDa was detected under acidic pH at 37°C. The secreted aspartic peptidase of T. asahii efficiently cleaved the cathepsin D peptide substrate, but not the substrates with specificity to HIV-1 peptidase and rennin. The capability to cleave either cathepsin D substrate in a fluorogenic assay or BSA immobilized within a gel matrix varied according to the T. asahii isolate. T. asahii extracellular peptidase activity was strongly inhibited by pepstatin A and HIV peptidase inhibitors, classifying it as an aspartic-type peptidase. Human serum albumin, mucin, non-immune immunoglobulin G and gelatin induced, in different levels, the secretion of this aspartic peptidase. With these results, T. asahii must be included in the list of many human fungal opportunistic pathogens able to secrete an aspartic-type peptidase.


Assuntos
Ácido Aspártico Proteases/química , Ácido Aspártico Proteases/metabolismo , Trichosporon/enzimologia , Brasil , Catepsina D/metabolismo , DNA Fúngico , Gelatina , HIV-1/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G , Peso Molecular , Mucinas , Pepstatinas/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Inibidores de Proteases , Albumina Sérica , Pele/microbiologia , Trichosporon/crescimento & desenvolvimento , Trichosporon/isolamento & purificação , Trichosporon/patogenicidade
17.
Front Microbiol ; 8: 918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579986

RESUMO

Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 µM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.

18.
Curr Top Med Chem ; 17(11): 1303-1317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27784256

RESUMO

The introduction of the HIV aspartic peptidase inhibitors (HIV-PIs) has revolutionized the medical arena, since they have drastically reduced the number and the severity of opportunistic infections, including the protozoal diseases that afflict the HIV-infected individuals worldwide. HIV-PIs rapidly and profoundly diminish the viral load, which is paralleled by increase in the CD4+ T lymphocyte counts and stimulation of the survival and activation of neutrophil, monocyte and endothelial cells, culminating in a vigorous reduction in the number of deaths due to the AIDS, in the number of new cases of AIDS and in the number of hospitalization days. Many research groups around the globe are trying to decipher both the in vitro and in vivo antiprotozoal mechanisms behind the use of HIVPIs. These studies have been supported by the urgent need to discover novel active compounds able to treat incurable parasitoses, including three major neglected diseases: malaria, leishmaniasis and Chagas' disease. The present review summarizes the recent advances on the effects of HIV-PIs against Plasmodium spp., Leishmania spp. and Trypanosoma cruzi.


Assuntos
Antiprotozoários/farmacologia , Inibidores da Protease de HIV/farmacologia , Leishmania/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/química , Inibidores da Protease de HIV/química , Testes de Sensibilidade Parasitária
19.
Diabetes Metab Syndr ; 11(3): 225-230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27884496

RESUMO

This study summarizes major work which investigated the roles of glucagon like peptide-1 (GLP-1) and its receptor (GLP-1R); the use of GLP-1-R agonists and dipeptidyl peptidase 4 inhibitor in the management of type 2 diabetes mellitus. It focuses on the recent therapeutic development which has occurred in this field, and also discusses the potential treatments which can be discovered and implemented in the near future to design an effective therapy for type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Gerenciamento Clínico , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Sequência de Aminoácidos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Humanos , Hipoglicemiantes/farmacologia
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-508246

RESUMO

Objective To study the inhibitory effect and mechanism of dipeptide peptidase inhibitors analogues on LPS -induced inflam-matory response on microglia .Methods Microglia cells were cultured ,isolated and purified from the neonatal Sprague-Dawley rats.Divided them into blank group ,negative control ,LPS group and medicine group ( parallel determination for 3 times each group ) after pharmacological preconditioning for 48 hours.The optimal concentration of microglia proliferation induced by LPS were measured by MTT assay .Observed the role of dipeptide peptidase inhibitors analogues on LPS-induced microglia in different concentrations .The interleukin1β( IL-1β) ,tumor necro-sis factor alpha ( TNF-α) were assayed by enzyme-linked immunorrbent assay ( ELISA ) .The expression of TLR-4 was detected by Western blotting and the expression of NF-κB was detected by RT-PCR.Results LPS induced the proliferation of microglia and significantly in-creased the release of inflammatory cytokines in LPS-stimulated primary microglia .Compared with the blank group ,dipeptide peptidase inhibi-tors analogues could inhibit this effect and the IC 50 values was 1.014 ×10 -2 mol/L to MG after pretreatment for 48 hours.Dipeptide peptidase inhibitors analogues could inhibit the release of TNF-αand IL-1 significantly(P<0.01),and it decreased the expression of TLR4 and NF-κB signif-icantly(P<0.01).Conclusion This research suggests that dipeptide peptidase inhibitors analogues restrain cell proliferation and inflammatory re-sponse of LPS-stimulated microglia,and the possible mechanism may be related to the inhibition of the expression of TLR-4 and NF-κB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...