Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Front Pharmacol ; 15: 1347234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835665

RESUMO

Peritoneal dialysis is one of the renal replacement treatments for patients with end-stage renal disease. Peritoneal dialysis-related peritoneal fibrosis is a pathological change in peritoneal tissue of peritoneal dialysis patients with progressive, non-suppurative inflammation accompanied by fibrous tissue hyperplasia, resulting in damage to the original structure and function, leading to peritoneal function failure. Currently, there is no specific drug in the clinic. Therefore, it is necessary to find a drug with good effects and few adverse reactions. Astragalus membranaceus (AMS) is the dried root of the Astragalus membranaceus (Fisch.) Bge. AMS and its active ingredients play a significant role in anti-inflammation, anti-fibrosis, regulation of immune function and regulation of blood pressure. Studies have shown that it can alleviate peritoneal fibrosis by reducing inflammatory response, inhibiting oxidative stress, degrading extracellular matrix deposition, regulating apoptosis, and regulating Transforming Growth Factor-ß. The author summarized the relationship between AMS and its active ingredients by referring to relevant literature at home and abroad, in order to provide some theoretical basis for further clinical research.

2.
Biomed Pharmacother ; 176: 116905, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865848

RESUMO

Peritoneal fibrosis, a common complication observed in long-term peritoneal dialysis patients, can gradually lead to ultrafiltration failure and the development of encapsulating peritoneal sclerosis. Although mechanisms of peritoneal fibrosis have been proposed, effective therapeutic options are unsatisfactory. Recently, several tyrosine kinase inhibitors have proven to be anti-fibrosis in rodent models. To assess the potential therapeutic effects of tyrosine kinase inhibitors on peritoneal fibrosis in the larger animal model, a novel porcine model of peritoneal fibrosis induced by 40 mM methylglyoxal in 2.5 % dialysate was established, and two different doses (20 mg/kg and 30 mg/kg) of sorafenib were given orally to evaluate their therapeutic efficacy in this study. Our results showed that sorafenib effectively reduced adhesions between peritoneal organs and significantly diminished the thickening of both the parietal and visceral peritoneum. Angiogenesis, vascular endothelial growth factor A production, myofibroblast infiltration, and decreased endothelial glycocalyx resulting from dialysate and methylglyoxal stimulations were also alleviated with sorafenib. However, therapeutic efficacy in ameliorating loss of mesothelial cells, restoring decreased ultrafiltration volume, and improving elevated small solutes transport rates was limited. In conclusion, this study demonstrated that sorafenib could potentially be used for peritoneal fibrosis treatment, but applying sorafenib alone might not be sufficient to fully rescue methylglyoxal-induced peritoneal defects.


Assuntos
Fibrose Peritoneal , Inibidores de Proteínas Quinases , Aldeído Pirúvico , Sorafenibe , Animais , Sorafenibe/farmacologia , Aldeído Pirúvico/metabolismo , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/patologia , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Suínos , Feminino , Modelos Animais de Doenças , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo
3.
BMC Complement Med Ther ; 24(1): 204, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789949

RESUMO

PURPOSE: This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS: Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS: In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION: APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.


Assuntos
Astrágalo , Quimiocina CXCL12 , Células-Tronco Mesenquimais , Fibrose Peritoneal , Polissacarídeos , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Ratos , Masculino , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/metabolismo , Polissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Animais de Doenças , Ciclamos/farmacologia
4.
Phytomedicine ; 129: 155683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701543

RESUMO

BACKGROUND: Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Long-term PD causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF), which reduces the efficiency of PD. Macrophages are thought to play a role in the onset and perpetuation of peritoneal injury. However, the mechanisms by which macrophages-PMCs communication regulates peritoneal fibrosis are not fully understood resulting in a lack of disease-modifying drugs. Astragaloside IV (AS-IV) possessed anti-fibrotic effect towards PF in PD whereas the mechanistic effect of AS-IV in PD is unknown. METHODS: The primary macrophages were extracted and treated with LPS or AS-IV, then co-cultured with primary PMCs in transwell plates. The macrophage-derived exosomes were extracted and purified by differential centrifugation, then co-cultured with primary PMCs. Small RNA-seq was used to detect differential miRNAs in exosomes, and then KEGG analysis and q-PCR were performed for validation. In vivo PD rat models were established by inducing with high-glucose peritoneal dialysis fluid and different concentrations of AS-IV and exosomes were intraperitoneal injection. Through qRT-PCR, western blotting, and luciferase reporting, candidate proteins and pathways were validated in vivo and in vitro. The functions of the validated pathways were further investigated using the mimic or inhibition strategy. PF and inflammatory situations were assessed. RESULTS: We found AS-IV reversed the MMT of PMCs caused by LPS-stimulated macrophages and the improving effect was mediated by macrophage-derived exosomes in vitro. We also demonstrated that AS-IV significantly reduced the MMT of PMCs in vitro or PF in a rat PD model via regulating exosome-contained miR-204-5p which targets Foxc1/ß-catenin signaling pathway. CONCLUSION: AS-IV attenuates macrophage-derived exosomes induced fibrosis in PD through the miR-204-5p/Foxc1 pathway.


Assuntos
Exossomos , Macrófagos , MicroRNAs , Fibrose Peritoneal , Ratos Sprague-Dawley , Saponinas , Triterpenos , Fibrose Peritoneal/tratamento farmacológico , Animais , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Ratos , MicroRNAs/metabolismo , Masculino , Macrófagos/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Modelos Animais de Doenças , Células Cultivadas , Técnicas de Cocultura
5.
Front Med (Lausanne) ; 11: 1353822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741768

RESUMO

Background: Retroperitoneal fibrosis, a condition of uncertain origin, is rarely linked to 8% of malignant cases, including breast, lung, gastrointestinal, genitourinary, thyroid, and carcinoid. The mechanism leading to peritoneal fibrosis induced by tumors is not well understood, possibly encompassing direct infiltration of neoplastic cells or the initiation of inflammatory responses prompted by cytokines released by tumor cells. We report a case of breast cancer with renal metastasis and retroperitoneal fibrosis detected using 18F-FDG PET/CT, providing help for clinical diagnosis and treatment. Case report: A 49-year-old woman was referred to the hospital with elevated creatinine and oliguria for over a month. Abdominal computer tomography (CT) and magnetic resonance imaging (MRI) showed a retroperitoneal fibrosis-induced acute kidney injury (AKI) was suspected. However, a percutaneous biopsy of the kidney lesion confirmed metastasis from breast cancer. The physical examination revealed inverted nipples and an orange peel appearance on the skin of both breasts. Ultrasonography revealed bilateral hyperplasia (BIRADS 4a) of the mammary glands and bilateral neck and axillary lymphadenopathy. Subsequently, 18F-deoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) detected abnormally high uptake (SUVmax) in the bilateral mammary glands and axillary lymph nodes, suggesting bilateral breast cancer. Furthermore, abnormal 18F-FDG uptake was detected in the kidney, suggesting renal metastasis. In addition, abnormal 18F-FDG uptake was observed in the vertebrae, accompanied by an elevation in inhomogeneous bone mineral density, raising suspicion of bone metastases. However, the possibility of myelodysplasia cannot be dismissed, and further investigations will be conducted during close follow-ups. There was significant 18F-FDG uptake in the retroperitoneal position indicating a potential association between retroperitoneal fibrosis and breast cancer. The final pathological diagnosis of the breast tissue confirmed bilateral invasive ductal carcinoma. The patient had been treated with 11 cycles of albumin-bound (nab)-paclitaxel (0.3 mg) and had no significant adverse reaction. Conclusion: In this case, neither the bilateral breast cancer nor the kidney metastatic lesion showed typical nodules or masses, so breast ultrasound, abdominal CT, and MRI did not suggest malignant lesions. PET/CT played an important role in detecting occult metastases and primary lesions, thereby contributing to more accurate staging, monitoring treatment responses, and prediction of prognosis in breast cancer.

6.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721924

RESUMO

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Cafeicos , Diálise Peritoneal , Fibrose Peritoneal , Álcool Feniletílico , Sirtuína 1 , Animais , Ratos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Soluções para Diálise , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
World J Gastrointest Surg ; 16(3): 955-965, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577091

RESUMO

BACKGROUND: Abdominal cocoon syndrome (ACS) represents a category within sclerosing encapsulating peritonitis, characterized by the encapsulation of internal organs with a fibrous, cocoon-like membrane of unknown origin, resulting in bowel obstruction and ischemia. Diagnosing this condition before surgery poses a challenge, often requiring confirmation during laparotomy. In this context, we depict three instances of ACS: One linked to intestinal obstruction, the second exclusively manifesting as intestinal ischemia without any obstruction, and the final case involving a discrepancy between the radiologist and the surgeon. CASE SUMMARY: Three male patients, aged 53, 58, and 61 originating from Northern Thailand, arrived at our medical facility complaining of abdominal pain without any prior surgeries. Their vital signs remained stable during the assessment. The diagnosis of abdominal cocoon was confirmed through abdominal computed tomography (CT) before surgery. In the first case, the CT scan revealed capsules around the small bowel loops, showing no enhancement, along with mesenteric congestion affecting both small and large bowel loops, without a clear obstruction. The second case showed intestinal obstruction due to an encapsulated capsule on the CT scan. In the final case, a patient presented with recurring abdominal pain. Initially, the radiologist suspected enteritis as the cause after the CT scan. However, a detailed review led the surgeon to suspect encapsulating peritoneal sclerosis (ACS) and subsequently perform surgery. The surgical procedure involved complete removal of the encapsulating structure, resection of a portion of the small bowel, and end-to-end anastomosis. No complications occurred during surgery, and the patients had a smooth recovery after surgery, eventually discharged in good health. The histopathological examination of the fibrous membrane (cocoon) across all cases consistently revealed the presence of fibro-collagenous tissue, without any indications of malignancy. CONCLUSION: Individuals diagnosed with abdominal cocoons commonly manifest vague symptoms of abdominal discomfort. An elevated degree of clinical suspicion, combined with the application of appropriate radiological evaluations, markedly improves the probability of identifying the abdominal cocoon before surgical intervention. In cases of complete bowel obstruction or ischemia, the established norm is the comprehensive removal of the peritoneal sac as part of standard care. Resection with intestinal anastomosis is advised solely when ischemia and gangrene have been confirmed.

8.
Front Endocrinol (Lausanne) ; 15: 1282925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567303

RESUMO

Background: Encapsulating peritoneal sclerosis (EPS) is a rare complication of prolonged peritoneal dialysis (PD) exposure, characterised by peritoneal thickening, calcification, and fibrosis ultimately presenting with life-threatening bowel obstruction. The presence or role of peritoneal calcification in the pathogenesis of EPS is poorly characterised. We hypothesise that significantly aberrant bone mineral metabolism in patients on PD can cause peritoneal calcification which may trigger the development of EPS. We compared the temporal evolution of bone mineral markers during PD in EPS patients with non-EPS long-term PD controls. Methods: Linear mixed model and logistic regression analysis were used to compare four-monthly serum levels of calcium, phosphate, parathyroid hormone, and alkaline phosphatase (ALP) over the duration of PD exposure in 46 EPS and 46 controls (PD, non-EPS) patients. Results: EPS patients had higher mean calcium (2.51 vs. 2.41 mmol/L) and ALP (248.00 vs. 111.13 IU/L) levels compared with controls (p=0.01 and p<0.001 respectively, maximum likelihood estimation). Logistic regression analysis demonstrated that high serum calcium and phosphate levels during PD were associated with a 4.5 and 2.9 fold increase in the risk of developing EPS respectively. Conclusion: High levels of calcium and phosphate in patients on PD were identified to be risk factors for EPS development. Possible reasons for this may be an imbalance of pro-calcifying factors and calcification inhibitors promoting peritoneal calcification which increases peritoneal stiffness. Mechanical alterations may trigger, unregulated fibrosis and subsequent development of EPS. Improved management of secondary hyperparathyroidism during PD may ultimately diminish the EPS risk.


Assuntos
Calcinose , Hiperparatireoidismo , Fibrose Peritoneal , Humanos , Fibrose Peritoneal/etiologia , Cálcio , Fatores de Risco , Calcinose/etiologia , Minerais , Fosfatos
9.
Curr Med Sci ; 44(2): 333-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622424

RESUMO

OBJECTIVE: Peritoneal fibrosis (PF) is the main cause of declining efficiency and ultrafiltration failure of the peritoneum, which restricts the long-term application of peritoneal dialysis (PD). This study aimed to investigate the therapeutic effects and mechanisms of bone marrow mesenchymal stem cells-derived exosomes (BMSC-Exos) on PF in response to PD. METHODS: Small RNA sequencing analysis of BMSC-Exos was performed by second-generation sequencing. C57BL/6J mice were infused with 4.25% glucose-based peritoneal dialysis fluid (PDF) for 6 consecutive weeks to establish a PF model. A total of 36 mice were randomly divided into 6 groups: control group, 1.5% PDF group, 2.5% PDF group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to measure the expression level of miR-27a-3p in BMSC-Exos and peritoneum of mice treated with different concentrations of PDF. HE and Masson staining were performed to evaluate the extent of PF. The therapeutic potential of BMSC-Exos for PF was examined through pathological examination, RT-qPCR, Western blotting, and peritoneal function analyses. Epithelial-mesenchymal transition (EMT) of HMrSV5 was induced with 4.25% PDF. Cells were divided into control group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Cell Counting Kit-8 assay was used to measure cell viability, and transwell migration assay was used to verify the capacity of BMSC-Exos to inhibit EMT in HMrSV5 cells. RESULTS: Small RNA sequencing analysis showed that miR-27a-3p was highly expressed in BMSC-derived exosomes compared to BMSCs. The RT-qPCR results showed that the expression of miR-27a-3p was upregulated in BMSC-Exos, but decreased in PD mice. We found that PF was glucose concentration-dependently enhanced in the peritoneum of the PD mice. Compared with the control mice, the PD mice showed high solute transport and decreased ultrafiltration volume as well as an obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-SMA, collagen-I, fibronectin, and ECM1. The mice with PD showed decreased miR-27a-3p. Peritoneal structural and functional damage was significantly attenuated after BMSC-Exos treatment, while PF and mesothelial damage were significantly ameliorated. Additionally, markers of fibrosis (α-SMA, collagen-I, fibronectin, ECM1) and profibrotic cytokines (TGF-ß1, PDGF) were downregulated at the mRNA and protein levels after BMSC-Exos treatment. In HMrSV5 cells, BMSC-Exos reversed the decrease in cell viability and the increase in cell migratory capacity caused by high-glucose PDF. Western blotting and RT-qPCR analysis revealed that BMSC-Exos treatment resulted in increased expression of E-cadherin (epithelial marker) and decreased expression of α-SMA, Snail, and vimentin (mesenchymal markers) compared to those of the 4.25% PDF-treated cells. Importantly, a dual-luciferase reporter assay showed that TP53 was a target gene of miR-27a-3p. TP53 overexpression significantly reversed the decreases in PF and EMT progression induced by BMSC-Exos. CONCLUSION: The present results demonstrate that BMSC-Exos showed an obvious protective effect on PD-related PF and suggest that BMSC-derived exosomal miR-27a-3p may exert its inhibitory effect on PF and EMT progression by targeting TP53.


Assuntos
Exossomos , MicroRNAs , Diálise Peritoneal , Fibrose Peritoneal , Camundongos , Animais , Fibrose Peritoneal/genética , Fibrose Peritoneal/terapia , Fibronectinas , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Diálise Peritoneal/efeitos adversos , MicroRNAs/genética , MicroRNAs/metabolismo , Glucose , Colágeno
10.
J Transl Med ; 22(1): 243, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443979

RESUMO

BACKGROUND: Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose in patients undergoing peritoneal dialysis. METHODS: To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-glucose treatment. RESULTS: Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathological changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis revealed enrichment in the epithelial-mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta pathways. The enriched genes included VEGFA, HIF-1α, TGF-ß1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identified 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo (lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated (R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, including SNAI2, TGF-ß1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can exacerbate the expression of TGF-ß1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs). CONCLUSIONS: In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-ß1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention.


Assuntos
Cromatina , Fibrose Peritoneal , Humanos , Cromatina/genética , Fator de Crescimento Transformador beta1/genética , Transcriptoma/genética , Aberrações Cromossômicas , Fator de Crescimento Transformador beta
11.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542505

RESUMO

Peritoneal dialysis (PD) is a home-based efficacious modality for the replacement of renal function in end-stage kidney failure patients, but it is still under-prescribed. A major limitation is the durability of the dialytic technique. Continuous exposure of the peritoneum to bioincompatible conventional glucose-based solutions is thought to be the main cause of the long-term morpho-functional peritoneal changes that eventually result in ultrafiltration failure. Poor PD solution biocompatibility is primarily related to the high glucose content, which is not only detrimental to the peritoneal membrane but has many potential metabolic side effects. To improve the clinical outcome and prolong the survival of the treatment, PD-related bioincompatibility urgently needs to be overcome. However, combining dialytic and osmotic efficacy with a satisfactory biocompatible profile is proving to be quite difficult. New approaches targeting the composition of the PD solution include the replacement of glucose with other osmotic agents, and the addition of cytoprotective or osmo-metabolic compounds. Other strategies include the infusion of mesenchymal cells or the administration of orally active agents. In the present article, we review the current evidence on efforts to improve the biocompatible and functional performance of PD, focusing on studies performed in vivo (animal models of PD, human subjects on PD).


Assuntos
Diálise Peritoneal , Diálise Renal , Animais , Humanos , Diálise Peritoneal/efeitos adversos , Soluções para Diálise/efeitos adversos , Peritônio , Glucose/uso terapêutico
12.
Int Urol Nephrol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483736

RESUMO

Sirtuin 6 (SIRT6) can inhibit the fibrosis of many organs. However, the relationship between SIRT6 and peritoneal fibrosis (PF) in peritoneal dialysis (PD) remains unclear. We collected 110 PD patients with a duration of PD for more than 3 months and studied the influence of PD duration and history of peritonitis on SIRT6 levels in PD effluents (PDEs). We also analyzed the relationship between SIRT6 levels in PDEs and transforming growth factor beta 1 (TGF-ß1), IL-6, PD duration, peritoneal function, PD ultrafiltration (UF), and glucose exposure. We extracted human peritoneal mesothelial cells (HPMCs) from PDEs and measured the protein and gene expression levels of SIRT6, E-cadherin, vimentin, and TGF-ß1 in these cells. Based on the clinical results, we used human peritoneal mesothelial cells lines (HMrSV5) to observe the changes in SIRT6 levels and mesothelial-to-mesenchymal transition (MMT) after intervention with PD fluid. By overexpressing and knocking down SIRT6 expression, we investigated the effect of SIRT6 expression on E-cadherin, vimentin, and TGF-ß1 expression to elucidate the role of SIRT6 in mesothelial-to-epithelial transition in PMCs. Results: (1) With the extension of PD duration, the influence of infection on SIRT6 levels in PDEs increased. Patients with the PD duration of more than 5 years and a history of peritonitis had the lowest SIRT6 levels. (2) SIRT6 levels in PDEs were negatively correlated with PD duration, total glucose exposure, TGF-ß1, IL-6 levels, and the dialysate-to-plasma ratio of creatinine (Cr4hD/P), but positively correlated with UF. This indicates that SIRT6 has a protective effect on the peritoneum. (3) The short-term group (PD ≤ 1 year) had higher SIRT6 and E-cadherin gene and protein levels than the mid-term group (1 year < PD ≤ 5 years) and long-term group (PD > 5 years) in PMCs, while vimentin and TGF-ß1 levels were lower in the mid-term group and long-term group. Patients with a history of peritonitis had lower SIRT6 and E-cadherin levels than those without such a history. (4) After 4.25% PD fluid intervention for HPMCs, longer intervention time resulted in lower SIRT6 levels. (5) Overexpressing SIRT6 can lead to increased E-cadherin expression and decreased vimentin and TGF-ß1 expression in HPMCs. Knocking down SIRT6 expression resulted in decreased E-cadherin expression and increased vimentin and TGF-ß1 expression in HPMCs. This indicates that SIRT6 expression can inhibit MMT in HPMCs, alleviate PF associated with PD, and have a protective effect on the peritoneum.

13.
Free Radic Biol Med ; 214: 54-68, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311259

RESUMO

Peritoneal mesothelial cell senescence promotes the development of peritoneal dialysis (PD)-related peritoneal fibrosis. We previously revealed that Brahma-related gene 1 (BRG1) is increased in peritoneal fibrosis yet its role in modulating peritoneal mesothelial cell senescence is still unknown. This study evaluated the mechanism of BRG1 in peritoneal mesothelial cell senescence and peritoneal fibrosis using BRG1 knockdown mice, primary peritoneal mesothelial cells and human peritoneal samples from PD patients. The augmentation of BRG1 expression accelerated peritoneal mesothelial cell senescence, which attributed to mitochondrial dysfunction and mitophagy inhibition. Mitophagy activator salidroside rescued fibrotic responses and cellular senescence induced by BRG1. Mechanistically, BRG1 was recruited to oxidation resistance 1 (OXR1) promoter, where it suppressed transcription of OXR1 through interacting with forkhead box protein p2. Inhibition of OXR1 abrogated the improvement of BRG1 deficiency in mitophagy, fibrotic responses and cellular senescence. In a mouse PD model, BRG1 knockdown restored mitophagy, alleviated senescence and ameliorated peritoneal fibrosis. More importantly, the elevation level of BRG1 in human PD was associated with PD duration and D/P creatinine values. In conclusion, BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. This indicates that modulating BRG1-OXR1-mitophagy signaling may represent an effective treatment for PD-related peritoneal fibrosis.


Assuntos
Diálise Peritoneal , Fibrose Peritoneal , Animais , Humanos , Camundongos , Senescência Celular/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/genética , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/metabolismo , Peritônio/patologia
14.
Front Physiol ; 15: 1331976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390449

RESUMO

Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.

15.
FASEB J ; 38(2): e23417, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226856

RESUMO

Long-term exposure to non-physiologically compatible dialysate inevitably leads to peritoneal fibrosis (PF) in patients undergoing peritoneal dialysis (PD), and there is no effective prevention or treatment for PF. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced after catalysis by sphingosine kinase (SPHK) 1/2 and activates signals through the S1P receptor (S1PR) via autocrine or paracrine. However, the role of SPHK1/S1P/S1PR signaling has never been elucidated in PF. In our research, we investigated S1P levels in peritoneal effluents and demonstrated the role of SPHK1/S1P/S1PR pathway in peritoneal fibrosis. It was found that S1P levels in peritoneal effluents were positively correlated with D/P Cr (r = 0.724, p < .001) and negatively correlated with 4 h ultrafiltration volume (r = -0.457, p < .001). S1PR1 and S1PR3 on peritoneal cells were increased after high glucose exposure in vivo and in vitro. Fingolimod was applied to suppress S1P/S1PR pathway. Fingolimod restored mouse peritoneal function by reducing interstitial hyperplasia, maintaining ultrafiltration volume, reducing peritoneal transport solute rate, and mitigating the protein expression changes of fibronectin, vimentin, α-SMA, and E-cadherin induced by PD and S1P. Fingolimod preserved the morphology of the human peritoneal mesothelial cells, MeT-5A, and moderated the mesothelial-mesenchymal transition (MMT) process. We further delineated that SPHK1 was elevated in peritoneal cells after high glucose exposure and suppression of SPHK1 in MeT-5A cells reduced S1P release. Overexpression of SPHK1 in MeT-5A cells increased S1P levels in the supernatant and fostered the MMT process. PF-543 treatment, targeting SPHK1, alleviated deterioration of mouse peritoneal function. In conclusion, S1P levels in peritoneal effluent were correlated with the deterioration of peritoneal function. SPHK1/S1P/S1PR pathway played an important role in PF.


Assuntos
Lisofosfolipídeos , Fibrose Peritoneal , Fosfotransferases (Aceptor do Grupo Álcool) , Esfingosina/análogos & derivados , Animais , Camundongos , Humanos , Cloridrato de Fingolimode , Glucose
16.
Int Immunopharmacol ; 128: 111561, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262160

RESUMO

Peritoneal fibrosis is a severe clinical complication associated with peritoneal dialysis (PD) and impacts its efficacy and patient outcomes. The process of mesothelial-mesenchymal transition (MMT) in peritoneal mesothelial cells plays a pivotal role in fibrogenesis, whereas metabolic reprogramming, characterized by excessive glycolysis, is essential in MMT development. No reliable therapies are available despite substantial progress made in understanding the mechanisms underlying peritoneal fibrosis. Protective effect of omega-3 polyunsaturated fatty acids (ω3 PUFAs) has been described in PD-induced peritoneal fibrosis, although the detailed mechanisms remain unknown. It is known that ω3 PUFAs bind to and activate the free fatty acid receptor 4 (FFAR4). However, the expression and role of FFAR4 in the peritoneum have not been investigated. Thus, we hypothesized that ω3 PUFAs would alleviate peritoneal fibrosis by inhibiting hyperglycolysis and MMT through FFAR4 activation. First, we determined FFAR4 expression in peritoneal mesothelium in humans and mice. FFAR4 expression was abnormally decreased in patients on PD and mice and HMrSV5 mesothelial cells exposed to PD fluid (PDF); this change was restored by the ω3 PUFAs (EPA and DHA). ω3 PUFAs significantly inhibited peritoneal hyperglycolysis, MMT, and fibrosis in PDF-treated mice and HMrSV5 mesothelial cells; these changes induced by ω3 PUFAs were blunted by treatment with the FFAR4 antagonist AH7614 and FFAR4 siRNA. Additionally, ω3 PUFAs induced FFAR4, Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß), and AMPK and suppressed mTOR, leading to the inhibition of hyperglycolysis, demonstrating that the ω3 PUFAs-mediated FFAR4 activation ameliorated peritoneal fibrosis by inhibiting hyperglycolysis and MMT via CaMKKß/AMPK/mTOR signaling. As natural FFAR4 agonists, ω3 PUFAs may be considered for the treatment of PD-associated peritoneal fibrosis.


Assuntos
Ácidos Graxos Ômega-3 , Fibrose Peritoneal , Humanos , Camundongos , Animais , Fibrose Peritoneal/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Mol Biomed ; 5(1): 3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172378

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Assuntos
Histona-Lisina N-Metiltransferase , Fibrose Peritoneal , Proteínas Tirosina Quinases , Animais , Feminino , Humanos , Masculino , Camundongos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Janus Quinase 3/metabolismo , Janus Quinase 3/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Sci China Life Sci ; 67(2): 360-378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815699

RESUMO

Peritoneal fibrosis together with increased capillaries is the primary cause of peritoneal dialysis failure. Mesothelial cell loss is an initiating event for peritoneal fibrosis. We find that the elevated glucose concentrations in peritoneal dialysate drive mesothelial cell pyroptosis in a manner dependent on caspase-3 and Gasdermin E, driving downstream inflammatory responses, including the activation of macrophages. Moreover, pyroptosis is associated with elevated vascular endothelial growth factor A and C, two key factors in vascular angiogenesis and lymphatic vessel formation. GSDME deficiency mice are protected from high glucose induced peritoneal fibrosis and ultrafiltration failure. Application of melatonin abrogates mesothelial cell pyroptosis through a MT1R-mediated action, and successfully reduces peritoneal fibrosis and angiogenesis in an animal model while preserving dialysis efficacy. Mechanistically, melatonin treatment maintains mitochondrial integrity in mesothelial cells, meanwhile activating mTOR signaling through an increase in the glycolysis product dihydroxyacetone phosphate. These effects together with quenching free radicals by melatonin help mesothelial cells maintain a relatively stable internal environment in the face of high-glucose stress. Thus, Melatonin treatment holds some promise in preserving mesothelium integrity and in decreasing angiogenesis to protect peritoneum function in patients undergoing peritoneal dialysis.


Assuntos
Melatonina , Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Piroptose , Ultrafiltração , Células Epiteliais , Glucose/farmacologia , Fibrose
19.
Int Urol Nephrol ; 56(6): 1987-1999, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38097887

RESUMO

BACKGROUND: Peritoneal fibrosis (PF), a common complication of long-term peritoneal dialysis, accounts for peritoneal ultrafiltration failure to develop into increased mortality. Nintedanib has previously been shown to protect against multi-organ fibrosis, including PF. Unfortunately, the precise molecular mechanism underlying nintedanib in the pathogenesis of PF remains elusive. METHODS: The mouse model of PF was generated by chlorhexidine gluconate (CG) injection with or without nintedanib administration, either with the simulation for the cell model of PF by constructing high-glucose (HG)-treated human peritoneal mesothelial cells (HPMCs). HE and Masson staining were applied to assess the histopathological changes of peritoneum and collagen deposition. FISH, RT-qPCR, western blot and immunofluorescence were employed to examine distribution or expression of targeted genes. Cell viability was detected using CCK-8 assay. Cell morphology was observed under a microscope. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were applied to validate the H19-EZH2-KLF2 regulatory axis. RESULTS: Aberrantly overexpressed H19 was observed in both the mouse and cell model of PF, of which knockdown significantly blocked HG-induced mesothelial-to-mesenchymal transition (MMT) of HPMCs. Moreover, loss of H19 further strengthened nintedanib-mediated suppressive effects against MMT process in a mouse model of PF. Mechanistically, H19 could epigenetically repressed KLF2 via recruiting EZH2. Furthermore, TGF-ß/Smad pathway was inactivated by nintedanib through mediating H19/KLF2 axis. CONCLUSION: In summary, nintedanib disrupts MMT process through regulating H19/EZH2/KLF2 axis and TGF-ß/Smad pathway, which laid the experimental foundation for nintedanib in the treatment of PF.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Indóis , Fatores de Transcrição Kruppel-Like , Fibrose Peritoneal , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/etiologia , Animais , Camundongos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Indóis/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos , Masculino
20.
Biochem Biophys Res Commun ; 693: 149387, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38145606

RESUMO

Peritoneal fibrosis (PF) is particularly common in individuals undergoing peritoneal dialysis (PD). Fibrosis of the parenchymal tissue typically progresses slowly. Therefore, preventing and reducing the advancement of fibrosis is crucial for effective patient treatment. Roxadustat is a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), primarily used to treat and improve renal anemia. Recent studies have found that HIF-1α possesses antioxidant activity and exerts a certain protective effect in ischemic heart disease and spinal cord injury, while it can also delay the progression of pulmonary and renal fibrosis. This study establishes the mice model through intraperitoneal injection of 4.25 % peritoneal dialysate fluid (PDF) and explores the therapeutic effects of Roxadustat by inducing TGF-ß1-mediated epithelial-mesenchymal transition (EMT) in Met-5A cells. The aim is to investigate the protective role and mechanisms of Roxadustat against PD-related PF. We observed thicker peritoneal tissue and reduced permeability in animals with PD-related PF samples. This was accompanied by heightened inflammation, which Roxadustat alleviated by lowering the levels of inflammatory cytokines (IL-6, TNF-α). Furthermore, Roxadustat inhibited EMT in PF mice and TGF-ß1-induced Met-5A cells, as evidenced by decreased expression of fibrotic markers, such as fibronectin, collagen I, and α-SMA, alongside an elevation in the expression of the epithelial marker, E-cadherin. Roxadustat also significantly decreased the expression of TGF-ß1 and the phosphorylation of p-Smad2 and p-Smad3. In conclusion, Roxadustat ameliorates peritoneal fibrosis through the TGF-ß/Smad pathway.


Assuntos
Nefropatias , Fibrose Peritoneal , Humanos , Camundongos , Animais , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Peritônio/patologia , Fibrose , Transição Epitelial-Mesenquimal , Nefropatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...