Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0063624, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028191

RESUMO

In this study, we showed that phenazine-1 carboxylic acid (PCA) of Pseudomonas aeruginosa induced the expression of Tet38 efflux pump triggering Staphylococcus aureus resistance to tetracycline and phenazines. Exposure of S. aureus RN6390 to supernatants of P. aeruginosa PA14 and its pyocyanin (PYO)-deficient mutants showed that P. aeruginosa non-PYO phenazines could induce the expression of Tet38 efflux pump. Direct exposure of RN6390 to PCA compound at 0.25× MIC led to a five-fold increase in tet38 transcripts. Expression of Tet38 protein was identified through confocal microscopy using RN6390(pRN-tet38p-yfp) that expressed YFP under control of the tet38 promoter by PCA at 0.25× MIC. The MICs of PCA of a Tet38-overexpressor and a Δtet38 mutant showed a three-fold increase and a two-fold decrease, respectively, compared with that of wild-type. Pre-exposure of RN6390 to PCA (0.25× MIC) for 1 hour prior to addition of tetracycline (1× or 10× MIC) improved bacteria viability of 1.5-fold and 2.6-fold, respectively, but addition of NaCl 7% together with tetracycline at 10× MIC reduced the number of viable PCA-exposed RN6390 of a 2.0-log10 CFU/mL. The transcript levels of tetR21, a repressor of tet38, decreased and increased two-fold in the presence of PCA and NaCl, respectively, suggesting that the effects of PCA and NaCl on tet38 production occurred through TetR21 expression. These data suggest that PCA-induced Tet38 protects S. aureus against tetracycline during coinfection with P. aeruginosa; however, induced tet38-mediated S. aureus resistance to tetracycline is reversed by NaCl 7%, a nebulized treatment used to enhance sputum mobilization in CF patients.

2.
J Plant Physiol ; 297: 154259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705079

RESUMO

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Fenazinas , Raízes de Plantas , Pseudomonas chlororaphis , Sacarose , Sacarose/metabolismo , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Pseudomonas chlororaphis/metabolismo , Fenazinas/metabolismo , Ácidos Indolacéticos/metabolismo
3.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38585852

RESUMO

While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.

4.
J Clin Med ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541916

RESUMO

Forensic hospitals throughout the country house individuals with severe mental illness and history of criminal violations. Insomnia affects 67.4% of hospitalized patients with chronic neuropsychiatric disorders, indicating that these conditions may hijack human somnogenic pathways. Conversely, somnolence is a common adverse effect of many antipsychotic drugs, further highlighting a common etiopathogenesis. Since the brain salience network is likely the common denominator for insomnia, neuropsychiatric and neurodegenerative disorders, here, we focus on the pathology of this neuronal assembly and its likely driver, the dysfunctional neuronal and mitochondrial membrane. We also discuss potential treatment strategies ranging from membrane lipid replacement to mitochondrial transplantation. The aims of this review are threefold: 1. Examining the causes of insomnia in forensic detainees with severe mental illness, as well as its role in predisposing them to neurodegenerative disorders. 2. Educating State hospital and prison clinicians on frontotemporal dementia behavioral variant, a condition increasingly diagnosed in older first offenders which is often missed due to the absence of memory impairment. 3. Introducing clinicians to natural compounds that are potentially beneficial for insomnia and severe mental illness.

5.
Heliyon ; 10(2): e24202, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293469

RESUMO

A series of new imidazole-phenazine derivatives were synthesized via a two-step process. The condensation of 2,3-diaminophenazine and benzaldehyde derivatives proceeds with intermediate formation of an aniline Schiff base, which undergoes subsequent cyclodehydrogenation in situ. The structures of the synthesized compounds were characterized by 1D and 2D NMR, FTIR and HRMS. A total of thirteen imidazole phenazine derivatives were synthesized and validated for their inhibitory activity as anti-dengue agents by an in vitro DENV2 NS2B-NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Two para-substituted imidazole phenazines, 3e and 3k, were found to be promising lead molecules for novel NS2B-NS3 protease inhibitors with IC50 of 54.8 µM and 71.9 µM, respectively, compared to quercetin as a control (IC50 104.8 µM). The in silico study was performed using AutoDock Vina to identify the binding energy and conformation of 3e and 3k with the active site of the DENV2 NS2B-NS3 protease Wichapong model. The results indicate better binding properties of 3e and 3k with calculated binding energies of -8.5 and -8.4 kcal mol-1, respectively, compared to the binding energy of quercetin of -7.2 kcal mol-1, which corroborates well with the experimental observations.

6.
Bioelectrochemistry ; 157: 108636, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38181591

RESUMO

Pseudomonas aeruginosa phenazines contribute to survival under microaerobic and anaerobic conditions by extracellular electron discharge to regulate cellular redox balances. This electron discharge is also attractive to be used for bioelectrochemical applications. However, elements of the respiratory pathways that interact with phenazines are not well understood. Five terminal oxidases are involved in the aerobic electron transport chain (ETC) of Pseudomonas putida and P. aeruginosa. The latter bacterium also includes four reductases that allow for denitrification. Here, we explored if phenazine-1-carboxylic acid interacts with those elements to enhance anodic electron discharge and drive bacterial growth in oxygen-limited conditions. Bioelectrochemical evaluations of terminal oxidase-deficient mutants of both Pseudomonas strains and P. aeruginosa with stimulated denitrification pathways indicated no direct beneficial interaction of phenazines with ETC elements for extracellular electron discharge. However, the single usage of the Cbb3-2 oxidase increased phenazine production, electron discharge, and cell growth. Assays with purified periplasmic cytochromes NirM and NirS indicated that pyocyanin acts as their electron donor. We conclude that phenazines play an important role in electron transfer to, between, and from terminal oxidases under oxygen-limiting conditions and their modulation might enhance EET. However, the phenazine-anode interaction cannot replace oxygen respiration to deliver energy for biomass formation.


Assuntos
Pseudomonas aeruginosa , Pseudomonas putida , Transporte de Elétrons , Pseudomonas aeruginosa/metabolismo , Pseudomonas putida/metabolismo , Elétrons , Fenazinas , Oxigênio/metabolismo
7.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687220

RESUMO

Herein, pyridinium and 4-vinylpyridinium groups are introduced into the VIE-active N,N'-disubstituted-dihydrodibenzo[a,c]phenazines (DPAC) framework to afford a series of D-π-A-structured dihydrodibenzo[a,c]phenazines in consideration of the aggregation-benefited performance of the DPAC module and the potential mitochondria-targeting capability of the resultant pyridinium-decorated DPACs (DPAC-PyPF6 and DPAC-D-PyPF6). To modulate the properties and elucidate the structure-property relationship, the corresponding pyridinyl/4-vinylpyridinyl-substituted DPACs, i.e., DPAC-Py and DPAC-D-Py, are designed and studied as controls. It is found that the strong intramolecular charge transfer (ICT) effect enables the effective separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of DPAC-PyPF6 and DPAC-D-PyPF6, which is conducive to the generation of ROS. By adjusting the electron-accepting group and the π-bridge, the excitation, absorption, luminescence, photosensitizing properties as well as the mitochondria-targeting ability can be finely tuned. Both DPAC-PyPF6 and DPAC-D-PyPF6 display large Stokes shifts (70-222 nm), solvent-dependent absorptions and emissions, aggregation-induced emission (AIE), red fluorescence in the aggregated state (λem = 600-650 nm), aggregation-promoted photosensitizing ability with the relative singlet-oxygen quantum yields higher than 1.10, and a mitochondria-targeting ability with the Pearson coefficients larger than 0.85. DPAC-D-PyPF6 shows absorption maximum at a longer wavelength, slightly redder fluorescence and better photosensitivity as compared to DPAC-PyPF6, which consequently leads to the higher photocytotoxicity under the irradiation of white light as a result of the larger π-conjugation.

8.
World J Microbiol Biotechnol ; 39(10): 279, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37583000

RESUMO

Phenazines are heteroaromatic compounds consisting of a central pyrazine ring fused with two benzenes. Different functional groups attached to the dibenzopyrasin core cause differences in the chemical, physical, and biological properties of phenazines. Interest in these compounds has not diminished for decades. New biological activities and practical applications discovered in recent years force researchers to investigate all aspects of the synthesis, degradation, and mechanisms of action of phenazines. In this study, we have demonstrated the involvement of the coxA gene product (cytochrome c oxidase, su I) in the production of phenazines in P. chlororaphis subsp. aurantiaca. Overlap PCR was used to knock out the coxA gene and the resulting mutants were screened for their ability to grow on rich and minimal culture media and for phenazine production. The reintroduction of the full-length coxA gene into the B-162/coxA strains was used to further confirm the role of this gene product in the ability to produce phenazines. We were able to show that the product of the coxA gene is necessary for phenazine production in rich growth media. At the same time, the CoxA protein does not seem to have any effect on phenazine production in M9 minimal salt medium. We could show that knocking down even one subunit of the cytochrome c oxidase complex leads to a significant reduction (to trace concentrations) or complete suppression of phenazine antibiotic production on rich PCA medium in P. chlororaphis subsp. aurantiaca.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Pseudomonas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Fenazinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
J Hazard Mater ; 458: 131924, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379601

RESUMO

Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 µM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.


Assuntos
Aminoácidos , Fenazinas , Hidrólise , Simulação de Acoplamento Molecular , Clonagem Molecular
10.
J Mol Recognit ; 36(7): e3027, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189259

RESUMO

α1 -Acid glycoprotein (AGP) is a prominent acute phase component of blood plasma and extravascular fluids. As a member of the immunocalins, AGP exerts protective effects against Gram-negative bacterial infections but the underlying molecular mechanisms still need to be elucidated. Notably, the chemical structures of phenothiazine, phenoxazine and acridine type ligands of AGP are similar to those of phenazine compounds excreted by the opportunistic human pathogen Pseudomonas aeruginosa and related bacterial species. These molecules, like pyocyanin, act as quorum sensing-associated virulence factors and are important contributors to bacterial biofilm formation and host colonisation. Molecular docking simulations revealed that these agents fit into the multi-lobed cavity of AGP. The binding site is decorated by several aromatic residues which seem to be essential for molecular recognition of the ligands allowing multifold π-π and CH-π interactions. The estimated affinity constants (~105 M-1 ) predict that these secondary metabolites could be trapped inside the ß-barrel of AGP which in turn could reduce their cytotoxic effects and disrupt the microbial QS network, facilitating the eradication of bacterial infections.


Assuntos
Biofilmes , Percepção de Quorum , Humanos , Simulação de Acoplamento Molecular , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Ligantes , Antibacterianos/farmacologia , Fenazinas , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo
11.
Curr Opin Chem Biol ; 75: 102320, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201291

RESUMO

While the list of small molecules known to be secreted by environmental microbes continues to grow, our understanding of their in situ biological functions remains minimal. The time has come to develop a framework to parse the meaning of these "secondary metabolites," which are ecologically ubiquitous and have direct applications in medicine and biotechnology. Here, we focus on a particular subset of molecules, redox active metabolites (RAMs), and review the well-studied phenazines as archetypes of this class. We argue that efforts to characterize the chemical, physical and biological makeup of the microenvironments, wherein these molecules are produced, coupled with measurements of the molecules' basic chemical properties, will enable significant progress in understanding the precise roles of novel RAMs.


Assuntos
Pseudomonas aeruginosa , Oxirredução
12.
World J Microbiol Biotechnol ; 39(4): 103, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36864230

RESUMO

The ambiguous nature of pyocyanin was noted quite early after its discovery. This substance is a recognized Pseudomonas aeruginosa virulence factor that causes problems in cystic fibrosis, wound healing, and microbiologically induced corrosion. However, it can also be a potent chemical with potential use in a wide variety of technologies and applications, e.g. green energy production in microbial fuel cells, biocontrol in agriculture, therapy in medicine, or environmental protection. In this mini-review, we shortly describe the properties of pyocyanin, its role in the physiology of Pseudomonas and show the ever-growing interest in it. We also summarize the possible ways of modulating pyocyanin production. We underline different approaches of the researchers that aim either at lowering or increasing pyocyanin production by using different culturing methods, chemical additives, physical factors (e.g. electromagnetic field), or genetic engineering techniques. The review aims to present the ambiguous character of pyocyanin, underline its potential, and signalize the possible further research directions.


Assuntos
Agricultura , Fibrose Cística , Humanos , Corrosão , Engenharia , Engenharia Genética , Piocianina
13.
Microbiol Spectr ; : e0509722, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920212

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes major health care concerns due to its virulence and high intrinsic resistance to antimicrobial agents. Therefore, new treatments are greatly needed. An interesting approach is to target quorum sensing (QS). QS regulates the production of a wide variety of virulence factors and biofilm formation in P. aeruginosa. This study describes the identification of paecilomycone as an inhibitor of QS in both Chromobacterium violaceum and P. aeruginosa. Paecilomycone strongly inhibited the production of virulence factors in P. aeruginosa, including various phenazines, and biofilm formation. In search of the working mechanism, we found that paecilomycone inhibited the production of 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), but not 2'-aminoacetophenone (2-AA). Therefore, we suggest that paecilomycone affects parts of QS in P. aeruginosa by targeting the PqsBC complex and alternative targets or alters processes that influence the enzymatic activity of the PqsBC complex. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research. IMPORTANCE Antibiotics are becoming less effective against bacterial infections due to the evolution of resistance among bacteria. Pseudomonas aeruginosa is a Gram-negative pathogen that causes major health care concerns and is difficult to treat due to its high intrinsic resistance to antimicrobial agents. Therefore, new targets are needed, and an interesting approach is to target quorum sensing (QS). QS is the communication system in bacteria that regulates multiple pathways, including the production of virulence factors and biofilm formation, which leads to high toxicity in the host and low sensitivity to antibiotics, respectively. We found a compound, named paecilomycone, that inhibited biofilm formation and the production of various virulence factors in P. aeruginosa. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research.

14.
ChemSusChem ; 16(8): e202201984, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36753400

RESUMO

Phenazines are an emerging class of organic compounds that have been recently utilized in aqueous redox flow batteries, a promising technology for large-scale energy storage. A virtual screening based on density functional theory calculations is used to investigate the redox potentials of around 100 phenazine derivatives in aqueous media containing various electron-donating or electron-withdrawing groups at different positions. The calculations identify the crucial positions that should be functionalized with multiple hydroxy groups to design new anolytes. The combined experimental-computational methodology reported herein guides the development of a new molecule with a record low reversible redox potential as a potential anolyte for aqueous redox flow batteries.

15.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771036

RESUMO

Phenazines are a large group of heterocyclic nitrogen-containing compounds with demonstrated insecticidal, antimicrobial, antiparasitic, and anticancer activities. These natural compounds are synthesized by several microorganisms originating from diverse habitats, including marine and terrestrial sources. The most well-studied producers belong to the Pseudomonas genus, which has been extensively investigated over the years for its ability to synthesize phenazines. This review is focused on the research performed on pseudomonads' phenazines in recent years. Their biosynthetic pathways, mechanism of regulation, production processes, bioactivities, and applications are revised in this manuscript.


Assuntos
Fenazinas , Pseudomonas , Pseudomonas/metabolismo , Fenazinas/farmacologia , Ecossistema , Vias Biossintéticas
16.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36804958

RESUMO

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Imunidade Inata , Bactérias , Pseudomonas aeruginosa/metabolismo
17.
Elife ; 122023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661299

RESUMO

Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Humanos , Fibrose Cística/complicações , Antibacterianos/farmacologia , Tobramicina/farmacologia , Fenótipo , Pseudomonas aeruginosa/genética , Biofilmes
18.
J Sep Sci ; 45(24): 4397-4406, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271738

RESUMO

An active substance of pyrano[3,2-a]phenazine, also called CPUL1, is a synthesized phenazine derivative and displays broad-spectrum anticancer activities. Quantitative assessment of CPUL1 in biological samples has not been well established, hindering pharmaceutical development and application. According to international guidelines, a sensitive and selective liquid chromatography-tandem mass spectrometry method in negative ion mode was developed and validated for quantification of CPUL1 in human plasma, colorectal cancer cell lines, and rat plasma, whereby linearity and accuracy were demonstrated for the range of 1-1000 ng/ml. The validated liquid chromatography-tandem mass spectrometry method was successfully employed in pharmacokinetic studies of CPUL1 in vitro and in vivo. Notably, the cellular pharmacokinetic behavior of CPUL1 varies in colorectal cancer cell lines. Regarding the pharmacokinetic processes in vivo, oral absorption was less effective than an injection, with a bioavailability of 23.66%. CPUL1 was linearly eliminated after a single administration; however, it could accumulate in tissues (heart, liver, spleen, lung, and kidney) after multiple injections. In summary, this study established a capable bioanalytical method for CPUL1 and provided exploratory pharmacokinetic data, paving the way for use of this promising derivative in disease models.


Assuntos
Neoplasias Colorretais , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Plasma/química , Fenazinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
19.
J Agric Food Chem ; 70(33): 10158-10169, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35948060

RESUMO

The effects of the natural pesticides, phenazines, were reported to be limited by some tolerant metabolism processes within Xanthomonas. Our previous studies suggested that the functional cytochrome bc1 complex, the indispensable component of the respiration chain, might participate in tolerating phenazines in Xanthomonas. In this study, the cytochrome bc1 mutants of Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas oryzae pv. oryzae (Xoo), which exhibit different tolerance abilities to phenazines, were constructed, and the cytochrome bc1 complex was proven to partake a critical and conserved role in tolerating phenazines in Xanthomonas. In addition, results of the cytochrome c mutants suggested the different functions of the various cytochrome c proteins in Xanthomonas and that the electron channeled by the cytochrome bc1 complex to cytochrome C4 is the key to reveal the tolerance mechanism. In conclusion, the study of the cytochrome bc1 complex provides a potential strategy to improve the activity of phenazines against Xanthomonas.


Assuntos
Oryza , Xanthomonas , Proteínas de Bactérias/metabolismo , Citocromos c/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Oryza/metabolismo , Fenazinas/metabolismo , Fenazinas/farmacologia , Doenças das Plantas/prevenção & controle
20.
Adv Healthc Mater ; 11(19): e2200773, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853169

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen causing infections in blood and implanted devices. Traditional identification methods take more than 24 h to produce results. Molecular biology methods expedite detection, but require an advanced skill set. To address these challenges, this work demonstrates functionalization of laser-induced graphene (LIG) for developing flexible electrochemical sensors for P. aeruginosa based on phenazines. Electrodeposition as a facile approach is used to functionalize LIG with molybdenum polysulfide (MoSx ). The sensor's limit of detection (LOD), sensitivity, and specificity are determined in broth, agar, and wound simulating medium (WSM). Control experiments with Escherichia coli, which does not produce phenazines, demonstrate specificity of sensors for P. aeruginosa. The LOD for pyocyanin (PYO) and phenazine-1-carboxylic acid (PCA) is 0.19 × 10-6  and 1.2 × 10-6  m, respectively. Furthermore, the highly stable sensors enable real-time monitoring of P. aeruginosa biofilms over several days. Comparing square wave voltammetry data over time shows time-dependent generation of phenazines. In particular, two configurations-"Normal" and "Flipped"-are studied, showing that the phenazines time dynamics vary depending on how cells interact with sensors. The reported results demonstrate the potential of the developed sensors for integration with wound dressings for early diagnosis of P. aeruginosa infection.


Assuntos
Grafite , Pseudomonas aeruginosa , Ágar , Escherichia coli , Lasers , Molibdênio , Fenazinas , Piocianina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...