Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.942
Filtrar
1.
Plant Foods Hum Nutr ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976202

RESUMO

This study investigated the anti-inflammatory effect of hydrophilic and lipophilic extracts from juçara fruits (Euterpe edulis Martius) through measurement of nitric oxide (NOx) and cytokines (IL-12p70, TNF-α, INF-γ, MCP-1, IL-6, and IL-10). J774 macrophages were stimulated with lipopolysaccharides (1 µg/mL) and treated with various concentrations (1-100 µg/mL) of juçara fruits extracts from crude extracts, and hexane, dichloromethane, ethyl acetate, and butanol fractions. Potential relationships between the phenolic composition of the extracts determined by LC-ESI-MS/MS and their anti-inflammatory capacity were also evaluated. Hexane and dichloromethane fractions inhibited NOx and IL-12p70 while increased IL-10. Hexane fractions also decreased IL-6 and IFN-γ production. Hexane and dichloromethane fractions showed a higher number of phenolic compounds (32 and 34, respectively) than the other extracts tested and were also the only ones that presented benzoic acid and pinocembrin. These results suggest juçara fruits compounds as potential anti-inflammatory agents, especially those of a more apolar nature.

2.
Nat Prod Res ; : 1-9, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972058

RESUMO

This study's main objectives are to evaluate and confirm the effects of the extraction process, operating conditions, solvent type and solvent polarity on the yield and quality of the extracts. Supercritical carbon dioxide (scCO2) and Soxhlet were specially used in this study to extract bioactive chemicals from the seeds of a natural plant known as Plantago ovata. No studies have been published so far regarding the extraction from the seeds of this plant using scCO2.The effects of three operating parameters (pressure, temperature and particle size) on the extraction yield, total phenolic content, total flavonoid content (TFC), total tannin content (TTC) and antioxidant activity were assessed in this study using the Box-Behnken statistical experimental design (BBD). The chemical components in the extracts were separated and identified using gas chromatography mass spectrometry. According to the antioxidant activity results, scCO2 failed to produce bioactive compounds with interesting properties when operated within operating range conditions.

3.
J Agric Food Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973576

RESUMO

Peel and seeds are the main byproducts from tomato (Lycopersicon esculentum P. Mill) processing with high concentrations of polyphenols that have been underexploited. Herein, polyphenolic profiles in tomato peel and seeds were elucidated by untargeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) with an LTQ Orbitrap analyzer. Samples from two Spanish regions─"Murcia" and "Almería"─were analyzed to obtain complementary results. 57 compounds were found, mainly phenolic acids and flavonoids, of which eight were identified for the first time in tomato. Polyphenols were more abundant in byproducts from "Murcia" samples than in those from"Almería" samples, where the abundance of compounds like coutaric, caffeic, neochlorogenic, dicaffeoylquinic and ferulic acids, vanillic acid hexoside, catechin, naringenin, prunin, apigenin-O-hexoside, rutin, and rutin-O-pentoside was even much higher in byproducts than that in whole fruits. These results reveal the wide range of polyphenols found in tomato byproducts, with potential applications in pharmaceutical research, food preservation, and cosmetic development, among others.

4.
Food Chem X ; 23: 101551, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974199

RESUMO

Sweet potatoes are rich in flavonoids and phenolic acids, showing incomparable nutritional and health value. In this investigation, we comprehensively analyzed the secondary metabolite profiles in the flesh of different-colored sweet potato flesh. We determined the metabolomic profiles of white sweet potato flesh (BS), orange sweet potato flesh (CS), and purple sweet potato flesh (ZS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CS vs. BS, ZS vs. BS, and ZS vs. CS comparisons identified a total of 4447 secondary metabolites, including 1540, 1949, and 1931 differentially accumulated metabolites. Among them, there were significant differences in flavonoids and phenolic acids. There were 20 flavonoids and 13 phenolic acids that were common differential metabolites among the three comparison groups. The accumulation of paeoniflorin-like and delphinidin-like compounds may be responsible for the purple coloration of sweet potato flesh. These findings provide new rationale and insights for the development of functional foods for sweet potatoes. List of compounds: Kaempferol (PubChem CID: 5280863); Peonidin 3-(6"-p-coumarylglucoside) (PubChem CID: 44256849); Swerchirin (PubChem CID: 5281660); Trilobatin (PubChem CID: 6451798); 3-Geranyl-4-hydroxybenzoate (PubChem CID: 54730540); Eupatorin (PubChem CID: 97214); Icaritin (PubChem CID: 5318980); Isorhamnetin (PubChem CID: 5281654); Glucoliquiritin apioside (PubChem CID: 74819335); Brazilin (PubChem CID: 73384).

5.
Food Sci Anim Resour ; 44(4): 817-831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974719

RESUMO

In this study, physicochemical and antioxidant properties, and storage stability (1, 3, and 7 days) of pork patties added with edible insect powders (EIP) of four species (Larvae of Tenenbrio molitor, Protaetia brevitarsis seulensis, Allomyrina dichotoma, and Gryllus bimaculatus) as meat partial substitutes were investigated. Twenty percent of each EIP was added to pork patties, and four treatments were prepared. On the other hand, two control groups were set, one with 0.1 g of ascorbic acid and the other without anything. Adding EIP decreased water content but increased protein, fat, carbohydrate, and ash contents. In addition, the use of EIP increased the water holding capacity and texture properties as well as decreased the cooking loss. However, the sensory evaluation and storage stability were negatively affected by the addition of EIP. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity had a positive effect on storage stability. It is believed that the addition of EIP resulted in high antioxidants due to the presence of polyphenol compounds in EIP. These results indicate that EIP has great potential to be used as meat partial substitute to improve the quality improvement and antioxidant in pork patties. However, in order to improve storage stability and consumer preference, further research is needed to apply it to patties by reducing the amount of EIP or adding auxiliary ingredients.

6.
Front Immunol ; 15: 1345002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975345

RESUMO

Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.


Assuntos
Anti-Inflamatórios , Hidroxibenzoatos , Inflamação , Plantas Comestíveis , Plantas Medicinais , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Inflamação/imunologia , Plantas Comestíveis/química , Plantas Medicinais/química , Transdução de Sinais/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos
7.
Food Chem ; 458: 140223, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38954956

RESUMO

Fresh-cut pear fruit is greatly impacted by enzymatic browning, and maintaining quality remains a challenge. This study examined the impact of exogenous α-lipoic acid (α-LA) treatment on enzymatic browning and nutritional quality of fresh-cut pears. Results revealed that 0.5 g/L α-LA treatment effectively maintained color and firmness, and inhibited the increase in microbial number. The α-LA treatment also reduced MDA and H2O2 contents, decreased PPO activity, and enhanced SOD, CAT, and PAL activities. The α-LA treatment notably upregulated phenolic metabolism-related gene expression, including PbPAL, Pb4CL, PbC4H, PbCHI and PbCHS, and then increasing total phenols and flavonoids contents. Furthermore, it also influenced carbohydrate metabolism-related gene expression, including PbSS, PbSPS, PbAI and PbNI, maintaining a high level of sucrose content. These findings indicated that α-LA treatment showed promise in reducing browning and enhancing fresh-cut pears quality, offering a potential postharvest method to prolong the lifespan and maintain nutritional quality.

8.
Nat Prod Res ; : 1-5, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949524

RESUMO

This work presents investigation of chemical composition and antioxidant activity of ethanolic extracts of leaves with flowers and berries prepared by ultrasound and Soxhlet extractions of Crataegus monogyna from Bosnia and Herzegovina. Total phenolic, flavonoid, and anthocyanin contents were measured by spectrophotometric methods. The sample of leaves with flowers extracted by Soxhlet extraction was the richest in the content of total phenolic compounds (14.43 mg GAE/g DW) and total flavonoids (2.22 mg QE/g DW). Same extract showed the best antioxidant activity with an IC50 value of 0.71 mg/mL for DPPH and 0.38 mg/mL for ABTS assay, as well as the highest content of gallic acid, caffeic acid, and hyperoside 0.04 mg GAE/g DW, 0.60 mg CA/g DW and 2.61 mg HYP/g DW, respectively, determined by HPLC-ED. Vitexin was not detected. The extract of berries obtained by ultrasound extraction had the highest amount of total anthocyanins (1.69 mg/100 g DW).

9.
Theranostics ; 14(9): 3486-3508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948064

RESUMO

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Assuntos
Fibrose , Metiltransferases , Monócitos , NF-kappa B , Humanos , Metiltransferases/metabolismo , Metiltransferases/genética , Monócitos/metabolismo , Masculino , Animais , NF-kappa B/metabolismo , Eritrócitos/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Metilação , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos Mononucleares/metabolismo , Angiotensina II/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Remodelação Ventricular , Miocárdio/metabolismo , Miocárdio/patologia , Nanomedicina/métodos
10.
PeerJ ; 12: e17588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948224

RESUMO

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Assuntos
Antibacterianos , Antineoplásicos , Extratos Vegetais , Folhas de Planta , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Folhas de Planta/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Azadirachta/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Química Verde/métodos , Tamanho da Partícula , Linhagem Celular Tumoral
11.
J Food Sci Technol ; 61(8): 1470-1480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966787

RESUMO

Vacuum impregnation is a novel methodology for adding various substances to porous foods. This study aimed to develop a cost effective automate system for vacuum impregnation of food materials to enhance their nutritional, functional and sensory properties depending on the functionality of the impregnation solution. The developed vacuum impregnation system includes a vacuum chamber, vacuum pump and an automation setup for creating and maintaining vacuum conditions, feeding impregnated solutions to the samples and releasing vacuum. Fresh-cut spinach leaves were impregnated with ascorbic acid (AsA) and calcium chloride (Cacl2) (10% concentration) in the setup in order to test the effect of the process on some biochemical properties. Statistical analysis revealed significant effect of vacuum impregnation on the biochemical properties (total soluble solids, total phenolic content, flavonoid content and free radical scavenging activity) and color of spinach leaves during storage up to 4 days. Impregnation process showed significant increase in the total phenolic and flavonoid content of the spinach leaves. Increment up to 78% in antioxidant activity was seen for the uncoated impregnated leaves as compared to 59% activity in untreated samples. Thus, products with desired parameters can be produced with this process with minimal impact on their properties at a lower cost and in a shorter time period.

12.
Front Nutr ; 11: 1350534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962447

RESUMO

Allium species are among the most widely cultivated vegetables for centuries for their positive effects on human health and their variety of uses in food preparation and cooking. Preparation and cooking processes create chemical changes that can affect the concentration and bioavailability of bioactive molecules. Understanding the changes in bioactive compounds and bioactive activities in Allium vegetables resulting from preparation and cooking processes is essential for better retention of these compounds and better utilization of their health benefits. This study aimed to investigate the effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. This review concludes that bioactive compounds in Allium vegetables are affected by each preparation and cooking process depending on variables including method, time, temperature. Owing to differences in the matrix and structure of the plant, preparation and cooking processes show different results on bioactive compounds and bioactive activities for different vegetables. Continued research is needed to help fill gaps in current knowledge, such as the optimal preparation and cooking processes for each Allium vegetable.

13.
Food Chem ; 458: 140228, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964110

RESUMO

The present study found for the first time that phenolic glycosides were an important material basis for mulberry leaves to inhibit lipase. The corresponding IC50 for hyperoside, rutin, astragalin and quercetin were 68, 252, 385 and 815 µg/mL respectively. The inhibitory effect was ranked as monoglycosides > phenolic hydroxyl groups > disaccharides on the benzone ring. Hyperoside bound to lipase in competitive inhibition type with one binding site, while the others bound to lipase in a mixed inhibition type by two similar sites. All four compounds altered the microenvironment and secondary conformation of lipase through static quenching. The docking score, stability, and binding energy were consistent with the compound inhibitory activity. The main binding between compounds and lipase amino acid residues were spontaneously though hydrophobic interactions and hydrogen bonding. The strong hydrogen bonds formed with SER-152 inside the lipase pocket, might be important for the strong inhibitory activity of hyperoside.

14.
J Agric Food Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960914

RESUMO

Flow-injection spin-trapping electron paramagnetic resonance (FI-EPR) methods that involve the use of 5,5-dimethyl-pyrroline-N-oxide (DMPO) as a spin-trapping reagent have been developed for the kinetic study of the O2•- radical scavenging reactions occurring in the presence of various plant-derived and synthetic phenolic antioxidants (Aox), such as flavonoid, pyrogallol, catechol, hydroquinone, resorcinol, and phenol derivatives in aqueous media (pH 7.4 at 25 °C). The systematically estimated second-order rate constants (ks) of these phenolic compounds span a wide range (from 4.5 × 10 to 1.0 × 106 M-1 s-1). The semilogarithm plots presenting the relationship between ks values and oxidation peak potential (Ep) values of phenolic Aox are divided into three groups (A1, A2, and B). The ks-Ep plots of phenolic Aox bearing two or three OH moieties, such as pyrogallol, catechol, and hydroquinone derivatives, belonged to Groups A1 and A2. These molecules are potent O2•- radical scavengers with ks values above 3.8 × 104 (M-1 s-1). The ks-Ep plots of all phenol and resorcinol derivatives, and a few catechol and hydroquinone derivatives containing carboxyl groups adjacent to the OH groups, were categorized into the group poor scavengers (ks < 1.6 × 103 M-1 s-1). The ks values of each group correlated negatively with Ep values, supporting the hypothesis that the O2•- radical scavenging reaction proceeds via one-electron and two-proton processes. The processes were accompanied by the production of hydrogen peroxide at pH 7.4. Furthermore, the correlation between the plots of ks and the OH proton dissociation constant (pKa•) of the intermediate aroxyl radicals (ks-pKa• plots) revealed that the second proton transfer process could potentially be the rate-determining step of the O2•- radical scavenging reaction of phenolic compounds. The ks-Ep plots provide practical information to predict the O2•- radical scavenging activity of plant-derived phenolic compounds based on those molecular structures.

15.
Drug Deliv ; 31(1): 2372285, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38952133

RESUMO

In this study, chitosan low molecular weight (LCH) and chitosan medium molecular weight (MCH) were employed to encapsulate a yarrow extract rich in chlorogenic acid and dicaffeoylquinic acids (DCQAs) that showed antiproliferative activity against colon adenocarcinoma cells. The design of CH micro/nanoparticles to increase the extract colon delivery was carried out by using two different techniques: ionic gelation and spray drying. Ionic gelation nanoparticles obtained were smaller and presented higher yields values than spray-drying microparticles, but spray-drying microparticles showed the best performance in terms of encapsulation efficiency (EE) (> 94%), also allowing the inclusion of a higher quantity of extract. Spray-drying microparticles designed using LCH with an LCH:extract ratio of 6:1 (1.25 mg/mL) showed a mean diameter of 1.31 ± 0.21 µm and EE values > 93%, for all phenolic compounds studied. The release profile of phenolic compounds included in this formulation, at gastrointestinal pHs (2 and 7.4), showed for most of them a small initial release, followed by an increase at 1 h, with a constant release up to 3 h. Chlorogenic acid presented the higher release values at 3 h (56.91% at pH 2; 44.45% at pH 7.4). DCQAs release at 3 h ranged between 9.01- 40.73%, being higher for 1,5- and 3,4-DCQAs. After gastrointestinal digestion, 67.65% of chlorogenic and most DCQAs remained encapsulated. Therefore, spray-drying microparticles can be proposed as a promising vehicle to increase the colon delivery of yarrow phenolics compounds (mainly chlorogenic acid and DCQAs) previously described as potential agents against colorectal cancer.


Assuntos
Achillea , Proliferação de Células , Quitosana , Ácido Clorogênico , Neoplasias Colorretais , Nanopartículas , Tamanho da Partícula , Extratos Vegetais , Quitosana/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Achillea/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/química , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Ácido Quínico/química , Ácido Quínico/administração & dosagem , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Colo/efeitos dos fármacos , Colo/metabolismo , Portadores de Fármacos/química , Peso Molecular
16.
Chemphyschem ; : e202400505, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978281

RESUMO

In the catalytic transformation of bio-oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin-derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum-vanadium heteropolyacids (H4PMo11VO40) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H4PMo11VO40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H4PMo11VO40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost-effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm3/g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni-metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100%, with a cyclohexane selectivity of 89.3%. This study presents a promising pathway for converting lignin-derived phenolic compounds.

17.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979987

RESUMO

BACKGROUND: This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS: The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION: These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38970632

RESUMO

This study aimed to measure spatial and temporal distributions of total phenolic compounds and their ecological and health hazards using UV-vis spectrophotometers as a low-cost, fast, simple method in water and sediments collected from Timsah Lake, Suez Canal, Egypt, 2022. Also, assessing highly adaptive fungal species associated with contamination is designed. Due to human and environmental activities and industrial waste discharges, Timsah Lake is increasingly threatened by all kinds of pollutants. The results indicated that the seasonal concentration means of the phenolic compounds were winter (0.229) > spring (0.161) > summer (0.124) > autumn (0.131) mg/l and winter (3.08) > summer (2.66) mg/g in water and sediment samples, respectively. The result has shown that the phenol concentrations in all stations were more than 0.005 and 0.1 mg/l for Egyptian National Standards and World Health Organization (WHO) for drinking water but less than the limits of 1 mg/l for wastewater. Notably, the fungi recorded the highest counts during spring, totaling 397 colonies/100 ml of water and 842 colonies/gram of sediment. Four isolates of fungi were identified and deposited in the GenBank database by Aspergillus terreus, Aspergillus terreus, Penicillium roqueforti, and Penicillium rubens under accession numbers OR401933, OR402837, OR402878, and OR424729, respectively. Moreover, ecological risk (RQ) for the total phenolic compounds was > 1 in all investigated stations for water and sediments. The hazard quotient is HQ < 1 in all seasons in water and sediments except winter. The hazard index (HI) in water and sediments for children is higher than for adults. It can be concluded that the low-cost, fast, simple method for determining phenolic content in water and sediment samples, using UV-vis spectrophotometry, was useful for predicting the reactivates of a wide variety of phenol and their derivatives. Furthermore, it can be concluded that Periodic assessments of water quality and strict regulations are necessary to safeguard this vital resource from pollution and ensure the well-being of future generations. Finally, policymakers and water treatment specialists might use the information from this research to reduce these chemical pollutants in Egypt.

19.
Food Chem ; 458: 140285, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38970956

RESUMO

Sprouting can enhance the bioavailability and stimulate the production of health-promoting compounds. This research explored the potential health benefits of wheat sprouting, focusing on underexplored areas in existing literature such as alterations in phenylalanine ammonia-lyase (PAL) activity and glutathione levels during wheat sprouting. Furthermore, special attention was directed toward asparagine (Asn), the main precursor of acrylamide formation, as regulatory agencies are actively seeking to impose limitations on the presence of acrylamide in baked products. The results demonstrate elevated levels of PAL (4.5-fold at 48 h of sprouting), antioxidants, and total phenolics (1.32 mg gallic acid equivalent/g dry matter at 72 h of sprouting), coupled with a reduction in Asn (i.e. 11-fold at 48 h of sprouting) and glutathione concentrations, after wheat sprouting. These findings suggest that sprouting can unlock health-promoting properties in wheat. Optimizing the sprouting process to harness these benefits, however, may have implications for the techno-functionality of wheat flour in food processing.

20.
Food Chem ; 459: 140334, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981379

RESUMO

Avocado ripening entails intricate physicochemical transformations resulting in desirable characteristics for consumption; however, its impact on specific metabolites and its cultivar dependence remains largely unexplored. This study employed LC-MS to quantitatively monitor 30 avocado pulp metabolites, including phenolic compounds, amino acids, nucleosides, vitamins, phytohormones, and related compounds, from unripe to overripe stages, in three commercial varieties (Hass, Fuerte, and Bacon). Multivariate statistical analysis revealed significant metabolic variations between cultivars, leading to the identification of potential varietal markers. Most monitored metabolites exhibited dynamic quantitative changes. Although phenolic compounds generally increased during ripening, exceptions such as epicatechin and chlorogenic acid were noted. Amino acids and derivatives displayed a highly cultivar-dependent evolution, with Fuerte demonstrating the highest concentrations and most pronounced fluctuations. In contrast to penstemide, uridine and abscisic acid levels consistently increased during ripening. Several compounds characteristic of the Bacon variety were delineated but require further research for identification and role elucidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...