Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.632
Filtrar
1.
Sci Rep ; 14(1): 21179, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261547

RESUMO

Sol g 2, a major protein found in the venom of the tropical fire ant (Solenopsis geminata), is well-known for its ability to bind various hydrophobic molecules. In this study, we investigate the binding activity of recombinant Sol g 2.1 protein (rSol g 2.1) with potential molecules, including (E)-ß-Farnesene, α-Caryophyllene, and 1-Octen-3-ol at different pH levels (pH 7.4 and 5.5) using fluorescence competitive binding assays (FCBA). Our results revealed that Sol g 2.1 protein has higher affinity binding with these ligands at neutral pH. Relevance to molecular docking and molecular dynamics simulations were utilized to provide insights into the stability and conformational dynamics of Sol g 2.1 and its ligand complexes. After simulation, we found that Sol g 2.1 protein has higher affinity binding with these ligands as well as high structural stability at pH 7.4 than at an acidic pH level, indicating by RMSD, RMSF, Rg, SASA, and principal component analysis (PCA). Additionally, the Sol g 2.1 protein complexes at pH 7.4 showed significantly lower binding free energy (∆Gbind) and higher total residue contributions, particularly from key non-polar amino acids such as Trp36, Met40, Cys62, and Ile104, compared to the lower pH environment. These explain why they exhibited higher binding affinity than the lower pH. Therefore, we suggested that Sol g 2.1 protein is a pH-responsive carrier protein. These findings also expand our understanding of protein-ligand interactions and offer potential avenues for the development of innovative drug delivery strategies targeting Sol g 2.1 protein.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Concentração de Íons de Hidrogênio , Ligantes , Animais , Simulação de Acoplamento Molecular , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Formigas/metabolismo
2.
Insect Biochem Mol Biol ; 173: 104180, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218166

RESUMO

Winged parthenogenetic aphids are mainly responsible for migration and dispersal. Aphid alarm pheromone (E)-ß-Farnesene (EBF) has dual effects on repelling and stimulating wing differentiation in aphids. Previous studies have shown that the odorant coreceptor SmisOrco is involved in the perception of EBF by S. miscanthi; however, its EBF-specific odorant receptor (OR) and the difference between winged and wingless aphids remain unclear. In this study, the Xenopus oocyte expression system and RNAi technology were used to detect the transmission of EBF signals, and it was found that the olfactory receptor SmisOR5 is an EBF-specific OR in S. miscanthi and is specifically highly expressed in the antennae of winged aphids. Furthermore, when OR5 was silenced with dsRNA, the repellent effect of EBF was weakened, and aphids showed more active aimless movements. Therefore, as a specific OR for EBF, the high expression level of SmisOR5 in winged aphids suggests a molecular basis for its high sensitivity to EBF. This study advances our understanding of the molecular mechanisms of aphid EBF perception and provides novel ideas for effective management and prevention of the migration of winged aphids.


Assuntos
Afídeos , Proteínas de Insetos , Receptores Odorantes , Animais , Afídeos/metabolismo , Afídeos/genética , Afídeos/fisiologia , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sesquiterpenos/metabolismo , Asas de Animais/metabolismo , Feromônios/metabolismo , Antenas de Artrópodes/metabolismo , Interferência de RNA
3.
Arch Microbiol ; 206(10): 397, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249569

RESUMO

Amongst all Enterococcus spp., E. faecalis and E. faecium are most known notorious pathogen and their biofilm formation has been associated with endocarditis, oral, urinary tract, and wound infections. Biofilm formation involves a pattern of initial adhesion, microcolony formation, and mature biofilms. The initial adhesion and microcolony formation involve numerous surface adhesins e.g. pili Ebp and polysaccharide Epa. The mature biofilms are maintained by eDNA, It's worth noting that phage-mediated dispersal plays a prominent role. Further, the involvement of peptide pheromones in regulating biofilm maintenance sets it apart from other pathogens and facilitating the horizontal transfer of resistance genes. The role of fsr based regulation by regulating gelE expression is also discussed. Thus, we provide a concise overview of the significant determinants at each stage of Enterococcus spp. biofilm formation. These elements could serve as promising targets for antibiofilm strategies.


Assuntos
Biofilmes , Enterococcus , Infecções por Bactérias Gram-Positivas , Enterococcus/genética , Enterococcus/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/fisiopatologia , Aderência Bacteriana/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Transferência Genética Horizontal
4.
Eng Life Sci ; 24(8): e2300235, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113811

RESUMO

Saccharomyces cerevisiae is a commonly used microorganism in the biotechnological industry. For the industrial heterologous production of compounds, it is of great advantage to work with growth-controllable yeast strains. In our work, we utilized the natural pheromone system of S. cerevisiae and generated a set of different strains possessing an α-pheromone controllable growth behavior. Naturally, the α-factor pheromone is involved in communication between haploid S. cerevisiae cells. Perception of the pheromone initiates several cellular changes, enabling the cells to prepare for an upcoming mating event. We exploited this natural pheromone response system and developed two different plasmid-based modules, in which the target genes, MET15 and FAR1, are under control of the α-factor sensitive FIG1 promoter for a controlled expression in S. cerevisiae. Whereas expression of MET15 led to a growth induction, FAR1 expression inhibited growth. The utilization of low copy number or high copy number plasmids for target gene expression and different concentrations of α-factor allow a finely adjustable control of yeast growth rate.

5.
J Chem Ecol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133432

RESUMO

Odontothrips loti (Haliday) (Thysanoptera: Thripidae) is one of the most serious pests on alfalfa, causing direct damage by feeding and indirect damage by transmitting plant viruses. This damage causes significant loss in alfalfa production. Semiochemicals offer opportunities to develop new approaches to thrips management. In this study, behavioral responses of female and male adults of O. loti to headspace volatiles from live female and male conspecifics were tested in a Y-tube olfactometer. The results showed that both male and female adults of O. loti were attracted to the odors released by conspecific males but not those released by females. Headspace volatiles released by female and male adults were collected using headspace solid-phase microextraction (HS-SPME). The active compound in the volatiles was identified by gas chromatography-mass spectrometry (GC-MS). The analysis showed that there was one major compound, (R)-lavandulyl (R)-2-methylbutanoate. The attractive activity of the synthetic aggregation pheromone compound was tested under laboratory and field conditions. In an olfactometer, both male and female adults showed significant preference for synthetic (R)-lavandulyl (R)-2-methylbutanoate at certain doses. Lures with synthetic (R)-lavandulyl (R)-2-methylbutanoate significantly increased the trap catches of sticky white traps at doses of 40-80 µg in the field. This study confirmed the production of aggregation pheromone by O. loti male adults and identified its active compound as (R)-lavandulyl (R)-2-methylbutanoate, providing a basis for population monitoring and mass trapping of this pest.

6.
R Soc Open Sci ; 11(6): 231837, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100179

RESUMO

Insect societies discriminate against foreigners to avoid exploitation. In ants, helper workers only accept individuals with the familiar chemical cues of their colony. Similarly, unfamiliar eggs may get rejected at their first appearance in the nest. We investigated egg acceptance mechanisms by introducing different types of foreign eggs into worker groups of the ant Camponotus floridanus. Workers from established colonies familiar with queen-laid eggs always accepted eggs from highly fecund queens, but worker-laid eggs only after exposure for several weeks. Workers naive to eggs only rejected worker-laid eggs once they had prior exposure to eggs laid by highly fecund queens, suggesting that prior exposure to such eggs is necessary for discrimination. The general acceptance of eggs from highly fecund queens, irrespective of previous worker egg exposure, suggests an innate response to the queen pheromone these eggs carry. Workers learned to accept queen-laid eggs from different species, indicating high flexibility in learning egg-recognition cues. In incipient colonies with queen-laid eggs that carry a weak queen pheromone, worker-laid eggs were more likely to get accepted than queen-laid eggs from a different species, suggesting that the similarity of egg-recognition cues between the two types of C. floridanus eggs increases acceptance.

7.
Vet Res Commun ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158806

RESUMO

Clinical appointment generates stress in feline patients, influencing the frequency of veterinary care with the species. The purpose of this study was to assess serum cortisol in cats submitted to oral gabapentin and integrative practices during clinical care. Twenty cats were evaluated in three clinical appointments, one week apart. All cats were submitted to treatments: placebo (PL), gabapentin (GA), and integrative practices (IP) (music therapy, pheromone therapy, and chromotherapy). GA and PL were administered by the owners 90 min before transportation to the veterinary teaching hospital, and IP were applied 30 min before clinical care. Cats were physically examined at all timepoints, and blood samples were collected for cortisol measurement. Serum cortisol levels ranged from 0.49 µg/dL to 17.99 µg/dL. Mean cortisol concentrations when cats received PL (7.6 µg/dL) were higher than when cats received GA (4.9 µg/dL) and IP (4.1 µg/dL). There was a statistical difference in cortisol levels when cats receiving PL and GA were compared (p = 0.03) and between PL and IP (p = 0.005). The study showed that feline serum cortisol levels were lower when cats received the treatments to IP (integrative practices) and GA (gabapentin), demonstrating that these are applicable methods for reducing stress of feline patients in clinical evaluation.

8.
J Agric Food Chem ; 72(33): 18353-18364, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165161

RESUMO

Hyphantria cunea (Lepidoptera: Erebidae) is difficult and costly to control as a quarantine pest found globally. Sex pheromone trapping is an effective measure for its population monitoring and control; however, the peripheral neural mechanism of sex pheromone recognition in H. cunea remains unclear. An electrophysiological analysis showed that both male and female moths of H. cunea responded to four components of sex pheromones and the responses of male moths were stronger than those of the female moths. We identified three types of trichoid sensilla (ST) responsive to sex pheromones using the single sensillum recording technique. Each type was involved in recognizing 9R, 10S-epoxy-1, Z3, Z6-heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-21Hy). Four peripheral neurons involved in the olfactory encoding of sex pheromones were identified. Four candidate pheromone receptor (PR) genes, HcunPR1a, HcunPR1b, HcunPR3, and HcunPR4, were screened by transcriptome sequencing. All of them were highly expressed in the antennae of males, except for HcunPR4, which was highly expressed in the antennae of females. Functional identification showed that HcunPR1a responded to sex pheromone. Other HcunPRs were not functionally identified. In summary, neurons involved in sex pheromone recognition of H. cunea were located in the ST, and HcunPR1a recognized secondary pheromone components 1, Z3, Z6-9S, 10R-epoxy-21Hy. Interestingly, PRs that recognize the main components of the sex pheromone may be located in an unknown branch of the olfactory receptor and merit further study. Our findings provide a better understanding of the peripheral neural coding mechanism of type II sex pheromones, and HcunPR1a may provide a target for the subsequent development of highly effective and specific biopesticides for H. cunea.


Assuntos
Proteínas de Insetos , Mariposas , Receptores de Feromônios , Atrativos Sexuais , Animais , Atrativos Sexuais/metabolismo , Mariposas/fisiologia , Mariposas/genética , Mariposas/metabolismo , Masculino , Feminino , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Neurônios/metabolismo
9.
Virulence ; 15(1): 2395833, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39177034

RESUMO

BACKGROUND: Fatty acid metabolism constitutes a significant and intricate biochemical process within microorganisms. Cytochrome P450 (CYP450) enzymes are found in most organisms and occupy a pivotal position in the metabolism of fatty acids. However, the role of CYP450 enzyme mediated fatty acid metabolism in the pathogenicity of pathogenic fungi remains unclear. METHODS: In this study, a CYP450 enzyme-encoding gene, SsCYP86, was identified in the sugarcane smut fungus Sporisorium scitamineum and its functions were characterized using a target gene homologous recombination strategy and metabonomics. RESULTS: We found that the expression of SsCYP86 was induced by or sugarcane wax or under the condition of mating/filamentation. Sexual reproduction assay demonstrated that the SsCYP86 deletion mutant was defective in mating/filamentation and significantly reduced its pathogenicity. Further fatty acid metabolomic analysis unravelled the levels of fatty acid metabolites were reduced in the SsCYP86 deletion mutant. Exogenous addition of fatty acid metabolites cis-11-eicosenoic acid (C20:1N9), pentadecanoic acid (C15:0), and linolenic acid (C18:3N3) partially restored the mating/filamentation ability of the SsCYP86 deletion mutant and restored the transcriptional level of the SsPRF1, a pheromone response transcription factor that is typically down-regulated in the absence of SsCYP86. Moreover, the constitutive expression of SsPRF1 in the SsCYP86 deletion mutant restored its mating/filamentation. CONCLUSION: Our results indicated that SsCyp86 modulates the SsPRF1 transcription by fatty acid metabolism, and thereby regulate the sexual reproduction of S. scitamineum. These findings provide insights into how CYPs regulate sexual reproduction in S. scitamineum.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Proteínas Fúngicas , Doenças das Plantas , Ácidos Graxos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharum/microbiologia , Virulência , Reprodução
10.
Curr Res Insect Sci ; 6: 100090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193175

RESUMO

The evolution of chemosensory receptors is key for the adaptation of animals to their environment. Recent knowledge acquired on the tri-dimensional structure of insect odorant receptors makes it possible to study the link between modifications in the receptor structure and evolution of response spectra in more depth. We investigated this question in palm weevils, several species of which are well-known invasive pests of ornamental or cultivated palm trees worldwide. These insects use aggregation pheromones to gather on their host plants for feeding and reproduction. An odorant receptor detecting the aggregation pheromone components was characterised in the Asian palm weevil Rhynchophorus ferrugineus. This study compared the response spectra of this receptor, RferOR1, and its ortholog in the American palm weevil R. palmarum, RpalOR1. Sequences of these two receptors exhibit more than 70 amino acid differences, but modelling of their 3D structures revealed that their putative binding pockets differ by only three amino acids, suggesting possible tuning conservation. Further functional characterization of RpalOR1 confirmed this hypothesis, as RpalOR1 and RferOR1 exhibited highly similar responses to coleopteran aggregation pheromones and chemically related molecules. Notably, we showed that R. ferrugineus pheromone compounds strongly activated RpalOR1, but we did not evidence any response to the R. palmarum pheromone compound rhynchophorol. Moreover, we discovered that several host plant volatiles also activated both pheromone receptors, although with lower sensitivity. This study not only reveals evolutionary conservation of odorant receptor tuning across the two palm weevil species, but also questions the specificity of pheromone detection usually observed in insects.

11.
Molecules ; 29(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202945

RESUMO

The tea tussock moth is a pest that damages tea leaves, affecting the quality and yield of tea and causing huge economic losses. The efficient asymmetric total synthesis of the sex pheromone of the tea tussock moth was achieved using commercially available starting materials with a 25% overall yield in 11 steps. Moreover, the chiral moiety was introduced by Evans' template and the key C-C bond construction was accomplished through Julia-Kocienski olefination coupling. The synthetic sex pheromone of the tea tussock moth will facilitate the subsequent assessment and implementation of pheromones as environmentally friendly tools for pest management.


Assuntos
Mariposas , Atrativos Sexuais , Atrativos Sexuais/síntese química , Atrativos Sexuais/química , Animais , Feminino , Estrutura Molecular , Camellia sinensis/química , Chá/química
12.
J Insect Physiol ; 158: 104699, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197709

RESUMO

Mating and the transfer of seminal fluid components including male accessory glands (MAGs) proteins can affect oviposition behavior in insects. After oviposition, some species of fruit flies deposit a host-marking pheromone (HMP) on the fruit that discourages oviposition by other females of the same or different species or genus and reduces competition between larvae. However, we know very little about how mating, receiving seminal fluid, or male condition can affect female host marking behavior. Here, we tested how the physiological state of females (mated or unmated), the receipt of seminal fluid, and the condition of the male (wild or sterile) affect oviposition and host-marking behavior (HMB) in Anastrepha ludens (Diptera: Tephritidae). We also determined the efficiency of the host-marking pheromone from mated or unmated females in deterring oviposition. In a further examination of how seminal fluid may be affecting HMB we assessed if there were differences in the size of wild or sterile MAGs and the protein quantity transferred during mating. Our results indicate that receiving seminal fluid increased egg laying and increased time invested in host-marking (HM). Unmated females laid fewer eggs than mated females but invested the same amount of time in depositing host-marking pheromone, which had similar effectiveness in deterring oviposition as that of mated females. Females that mated with sterile males laid the same number of eggs as females that mated with wild males but spent less time depositing host-marking pheromone, which suggests that females detect the condition of the male and invest less in marking hosts. Finally, sterile males had larger accessory glands and transferred more MAGs proteins during mating compared to wild males. Seminal proteins could be manipulating HM behavior and female investment into their current reproductive effort. We are only beginning to understand how male condition and seminal fluid can affect female physiology and maternal investment in HMP.


Assuntos
Oviposição , Sêmen , Comportamento Sexual Animal , Tephritidae , Animais , Masculino , Feminino , Tephritidae/fisiologia , Comportamento Sexual Animal/fisiologia , Sêmen/fisiologia , Feromônios
13.
Biology (Basel) ; 13(8)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39194570

RESUMO

Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis.

14.
J Bacteriol ; : e0019524, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177535

RESUMO

The accessory gene regulatory (Agr) system is required for virulence factor gene expression and pathogenesis of Staphylococcus aureus. The Agr system is activated in response to the accumulation of a cyclic autoinducing peptide (AIP), which is matured and secreted by the bacterium. The precursor of AIP, AgrD, consists of the AIP flanked by an N-terminal [Formula: see text]-helical Leader and a charged C-terminal tail. AgrD is matured to AIP by the action of two proteases, AgrB and MroQ. AgrB cleaves the C-terminal tail and promotes the formation of a thiolactone ring, whereas MroQ cleaves the N-terminal Leader in a manner that depends on the four-amino acid linker immediately following a conserved IG helix breaker motif. However, the attributes of AgrD that dictate the sequence of events in peptide maturation are not fully defined. Here, we used engineered AgrD peptide intermediates to ascertain the sufficiency of MroQ for N-terminal peptide cleavage, peptide export, and generation of mature AIP. We found that MroQ promotes the removal of the N-terminal Leader peptide from both linear and cyclic peptide intermediates, while peptide cyclization remained essential for signaling. The expression of the Leader peptide in isolation was sufficient for MroQ-dependent cleavage proximal to the four-amino-acid linker. In addition, active site mutations within AgrB destabilized full-length AgrD and thiolactone-containing intermediates and prevented the release of the Leader peptide. Altogether, our data support a tandem peptide maturation event involving both MroQ and AgrB that appears to couple protease activity and export of bioactive AIP.IMPORTANCEThe accessory gene regulatory (Agr) system is important for S. aureus pathogenesis. Activation of the Agr system requires recognition of a cyclic peptide pheromone, which must be fully matured to exert its biological activity. The complete events in cyclic peptide maturation and export from the bacterial cell remain to be fully defined. We and others recently discovered that the membrane peptidase MroQ is required for pheromone maturation. This study builds off the identification of MroQ and considers the attributes of the pheromone pro-peptide that are required for MroQ-mediated processing as well as uncovers features important for peptide stability and export. Overall, the findings in this study have implications for understanding bacterial pheromone maturation and virulence.

15.
J Agric Food Chem ; 72(34): 18864-18871, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39153187

RESUMO

Pheromone receptor (PR)-mediated transduction of sex pheromones to electrophysiological signals is the basis for sex pheromone communication. Orthaga achatina, a serious pest of the camphor tree, uses a mixture of four components (Z11-16:OAc, Z11-16:OH, Z11-16:Ald, and Z3,Z6,Z9,Z12,Z15-23:H) as its sex pheromone. In this study, we identified five PR genes (OachPR1-5) by phylogenetic analysis. Further RT-PCR and qPCR experiments showed that PR1-3 were specifically expressed in male antennae, while PR4 was significantly female-biased in expression. Functional characterization using the XOE-TEVC assay demonstrated that PR1 and PR3 both responded strongly to Z11-16:OH, while PR1 and PR3 had a weak response to Z3,Z6,Z9,Z12,Z15-23:H and Z11-16:Ald, respectively. Finally, two key amino acid residues (N78 and R331) were confirmed to be essential for binding of PR3 with Z11-16:OH by molecular docking and site-directed mutagenesis. This study helps understand the sex pheromone recognition molecular mechanism of O. achatina.


Assuntos
Proteínas de Insetos , Filogenia , Receptores Odorantes , Atrativos Sexuais , Atrativos Sexuais/química , Atrativos Sexuais/metabolismo , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Masculino , Feminino , Simulação de Acoplamento Molecular , Álcoois Graxos/metabolismo , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Aldeídos
16.
Front Microbiol ; 15: 1408701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040910

RESUMO

Introduction: Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods: As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion: The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.

17.
Proc Natl Acad Sci U S A ; 121(30): e2401926121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39018190

RESUMO

Sex pheromones play a crucial role in mate location and reproductive success. Insects face challenges in finding mates in low-density environments. The population dynamics of locusts vary greatly, ranging from solitary individuals to high-density swarms, leading to multiple-trait divergence between solitary and gregarious phases. However, differences in sexual communication between solitary and gregarious locusts have not been sufficiently explored. Herein, we found that solitary locusts but not gregarious ones heavily rely on a single compound, dibutyl phthalate (DBP), for sexual communication. DBP is abundantly released by solitary female locusts and elicits strong attraction of male solitary and gregarious locusts. Solitary adult males display much higher electrophysiological responses to DBP than adult females. Additionally, LmigOr13 was identified as the DBP-specific odorant receptor expressed in neurons housed in basiconic sensilla. Male LmigOr13-/- mutants generated by CRISPR/Cas9 have low electrophysiological responses and behavioral attraction to DBP in both laboratory and field cage experiments. Notably, the attractiveness of DBP to male locusts becomes more evident at lower population densities imposed by controlling the cage size. This finding sheds light on the utilization of a sex pheromone to promote reproductive success in extremely low-density conditions and provides important insights into alternative approaches for population monitoring of locusts.


Assuntos
Dibutilftalato , Comportamento Sexual Animal , Animais , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Atrativos Sexuais/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Comunicação Animal
18.
J Econ Entomol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046823

RESUMO

Multiple Epiphyas species inhabit southwestern Western Australia, including Light Brown Apple Moth (LBAM) Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), a globally significant, polyphagous pest. This study evaluated the efficacy and specificity of lures designed for 3 Epiphyas species: E. postvittana, Epiphyas pulla (Turner), and the undescribed Epiphyas sp. (1) (Common). Additionally, the study sought to determine the presence and distribution of Epiphyas species in 3 significant apple-growing localities. Trapping, together with partial sequencing of the mitochondrial COI gene, found LBAM to be restricted to the Perth Hills and E. pulla, to apple orchards near Manjimup and Pemberton. This geographic disjunction remains unexplained. Epiphyas sp. (1) was not recorded despite using a specifically designed lure. The E. pulla and LBAM traps demonstrated superior efficacy in capturing their target species, while the catch in Epiphyas sp. (1) traps did not significantly differ between the 2. Both E. pulla and LBAM exhibited peak abundance from late spring to the end of summer (October-February), with variations in timing and peak catch of male moths across species, locations, and years. Surveys conducted in April during the harvest period (February-May), when moth traps caught an average of 1-1.8 moths/trap/week, found no Epiphyas larvae or damage on 140,400 mature apples or on 26,000 leaves. While E. pulla and LBAM traps effectively monitor their target moths, genetic identification of trap catch would be necessary if they co-occurred. Encouragingly, the results indicate that both species become relatively rare as harvest season approaches, and neither inflicts significant damage to mature apples under existing management.

19.
J Agric Food Chem ; 72(31): 17248-17259, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051932

RESUMO

Apriona germari (Hope) presents a significant threat as a dangerous wood-boring pest, inflicting substantial harm to forest trees. Investigating the olfactory sensory system of A. germari holds substantial theoretical promise for developing eco-friendly control strategies. To date, however, the olfactory perception mechanism in A. germari remains largely unknown. Therefore, we performed transcriptome sequencing of A. germari across four distinct body parts: antennae, foreleg tarsal segments, mouthparts (maxillary and labial palps), and abdomen terminals, pinpointing the odorant binding protein (OBP) genes and analyzing their expression. We found eight AgerOBPs (5, 19, 23, 25, 29, 59, 63, 70) highly expressed in the antennae. In our competitive binding experiments, AgerOBP23 showed strong binding abilities to the pheromone component fuscumol acetate, eight plant volatiles (farnesol, cis-3-hexenal, nerolidol, myristol acetate, cis-3-hexenyl benzoate, (-)-α-cedrene, 3-ethylacetophenone, and decane), and four insecticides (chlorpyrifos, phoxim, indoxacarb, and cypermethrin). However, AgerOBP29 and AgerOBP63 did not show prominent binding activities to these tested chemicals. Through homology modeling and molecular docking, we identified the key amino acid sites involved in the binding process of AgerOBP23 to these ligands, which shed light on the molecular interactions underlying its binding specificity. Our study suggests that AgerOBP23 may serve as a potential target for future investigations of AgerOBP ligand binding. This approach is consistent with the reverse chemical ecology principle, establishing the groundwork for future studies focusing on attractant or repellent development by exploring further the molecular interactions between OBP and various compounds.


Assuntos
Proteínas de Insetos , Receptores Odorantes , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Animais , Simulação de Acoplamento Molecular , Filogenia , Feromônios/metabolismo , Feromônios/química
20.
J Agric Food Chem ; 72(31): 17317-17327, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39067067

RESUMO

With high aphid-repellent activity but low stability, (E)-ß-farnesene (EßF), the major component of the aphid alarm pheromone, can be used as a synergist to insecticides. Some EßF analogues possess both good aphid-repellent activity and stability, but the synergistic effect and related mechanism are still unclear. Therefore, this study investigated the synergistic effect and underlying mechanism of the EßF and its analogue against the aphid Myzus persicae. The results indicated that EßF and the analogue showed significantly synergistic effects to different insecticides, with synergism ratios from 1.524 to 3.446. Mechanistic studies revealed that EßF and the analogue exhibited effective repellent activity, significantly upregulated target OBP genes by 161 to 731%, increased aphid mobility, and thereby enhanced contact with insecticides. This research suggests that the EßF analogue represents a novel synergist for insecticides, with the potential for further application in aphid control owing to its enhanced bioactivity and the possibility of reducing insecticide doses.


Assuntos
Afídeos , Sinergismo Farmacológico , Inseticidas , Sesquiterpenos , Afídeos/efeitos dos fármacos , Animais , Inseticidas/química , Inseticidas/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Prunus persica/química , Prunus persica/parasitologia , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA