Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 175022, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059666

RESUMO

The biogeochemical cycling of phosphorus (P) in river-lake systems presents significant challenges in tracing P sources, highlighting the importance of effective traceability approaches for formulating targeted management measures to mitigate lake eutrophication. In this study, we used the oxygen isotope of phosphate (δ18Op) as a tracer in the river-lake systems, establishing a tracing pathway from potential end-members, through inflow rivers, and eventually to the lake. Taking Dianshan Lake and its main inflow rivers as the study area, we measured δ18Op values of potential end-members, including domestic sewage treatment plant effluents, industrial effluents from phosphorus-related enterprises (printing and dyeing, electroplating, plastics, etc.), and farmland soils. Notably, the industrial effluent signatures ranged from 13.1 ‰ to 21.0 ‰ with an average of 16.8 ‰ ± 3.2 ‰, enriching the δ18Op threshold database. Using the MixSIAR model, it was found that phosphorus in the Jishuigang River primarily originated from agricultural non-point sources and domestic sewage in the dry season, while the Qiandengpu River, with a higher proportion of urban area, had a greater influence from domestic sewage and industrial effluents. Moreover, significant differences were observed between δ18Op values at the lake entrances of the inflow rivers (13.7 ‰ ± 1.0 ‰) and in acid-soluble phosphate of the lake sediments (9.9 ‰ ± 1.0 ‰). Isotopic tracing revealed that phosphorus in the lake originated from both external inputs (80.6 %) and internal release (19.4 %) in the dry season. Alongside pollutant flux calculations based on the hydrological conditions and water quality of the inflow rivers, our findings indicated that phosphorus in Dianshan Lake was mainly attributed to agricultural non-point sources, domestic sewage and sediment release in the dry season. This study provided novel insights into the identification of pollution sources in the river-lake systems, with broad implications for pollution control and environmental protection.

2.
Environ Sci Technol ; 58(12): 5372-5382, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488121

RESUMO

Long-term phosphorus (P) fertilization results in P accumulation in agricultural soil and increases the risk of P leaching into water bodies. However, evaluating P leaching into groundwater is challenging, especially in clay soil with a high P sorption capacity. This study examined whether the combination of PO4 oxygen isotope (δ18OPO4) analysis and the P saturation ratio (PSR) was useful to identify P enrichment mechanisms in groundwater. We investigated the groundwater and possible P sources in Kubi, western Japan, with intensive citrus cultivation. Shallow groundwater had oxic conditions with high PO4 concentrations, and orchard soil P accumulation was high compared with forest soil. Although the soil had a high P sorption capacity, the PSR was above the threshold, indicating a high risk of P leaching from the surface orchard soil. The shallow groundwater δ18OPO4 values were higher than the expected isotopic equilibrium with pyrophosphatase. The high PSR and δ18OPO4 orchard soil values indicated that P leaching from orchard soil was the major P enrichment mechanism. The Bayesian mixing model estimated that 76.6% of the P supplied from the orchard soil was recycled by microorganisms. This demonstrates the utility of δ18OPO4 and the PSR to evaluate the P source and biological recycling in groundwater.


Assuntos
Água Subterrânea , Fósforo , Fósforo/análise , Fosfatos , Solo , Isótopos de Oxigênio/análise , Adsorção , Teorema de Bayes
3.
J Environ Manage ; 351: 119869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142596

RESUMO

The stacking of phosphogypsum has caused considerable phosphorus pollution in water bodies near phosphogypsum yards through surface runoff and underground infiltration. The phosphate oxygen isotope (δ18Op) tracing method has served as a valuable tool for tracing phosphorus pollution in water. However, the existing δ18Op enrichment and purification methods are complex, costly, and inefficient for phosphate recovery, particularly for phosphogypsum leachate with complex compositions. Herein, a simplified and optimized pretreatment method for δ18Op measurement in phosphogypsum leachate was developed. Zirconium/polyvinyl alcohol (Zr/PVA) gel beads showed good selectivity for phosphate enrichment from water at different initial phosphate concentrations with appropriate Zr/PVA dosage. The optimal enrichment pH value was <7, and the concentrated phosphate on the Zr/PVA gel beads could be effectively eluted in an alkaline environment. Compared with the traditional Fe or Mg coprecipitation enrichment methods, impurities in the solution showed no obvious adverse effects on the phosphate enrichment process. Further, the phosphate solution eluted from the Zr/PVA gel beads was purified by a simple adjustment of the pH instead of cation exchange in the traditional purification process. Magnesium ions in the solution could be completely removed when the pH ranged from 3.17 to 6.15, and the phosphate recovery rate could reach 98.66% when the eluent pH was 5.02. Fourier-transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy revealed that similar to traditional pretreatment method, the proposed method can obtain high-purity Ag3PO4 solids for δ18OP measurement and no isotope fractionation of δ18OP was observed. Therefore, this study provides a promising and reliable pretreatment method for δ18OP measurement, especially in complex phosphogypsum leachate.


Assuntos
Sulfato de Cálcio , Fosfatos , Fósforo , Isótopos de Oxigênio , Fósforo/química , Água
4.
Heliyon ; 9(10): e20607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817992

RESUMO

Phosphate oxygen isotope (δ18OP) technique is an effective tool to identify the source and transformation process of phosphorus. The poor applicability of existing δ18OP pretreatment methods for sediments hindered the large-scale application of δ18OP technology. This paper presents an optimization framework for the pretreatment of sediment δ18OP samples based on large-scale applications, using the Fuyang River Basin as a case study. The typical channel landscape outflow lake, South Lake, was selected as the most favorable point for assessing the applicability and optimizing the mainstream δ18OP pretreatment method, which was achieved by clarifying the sediment environmental characteristics of South Lake. To evaluate the suitability of the Blake and McLaughlin methods in South Lake, a comparative study was carried out based on five dimensions: phosphorus recovery rate, removal efficiency of organic matter, removal efficiency of extraction liquid impurity ion, experimental time, and reagent consumption cost. The findings demonstrated that the Blake method outperformed the McLaughlin method across all five dimensions. Based on the environmental characteristics of the sediments of South Lake, the Blake method was optimized from two perspectives, namely the substitution of reagents and adjustment and optimization of experimental procedures. This resulted in an enhancement of phosphorus recovery and organic matter removal efficiency, while also reducing the experimental time required. The optimized method also yielded satisfactory results when applied to the entire watershed. This research paper can thus offer valuable technical support for the widespread application of sediment δ18OP technology.

5.
Environ Res ; 218: 114970, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470350

RESUMO

Methylphosphonate (MPn), has been identified as a likely source of methane in aerobic ocean and may be responsible for the "ocean methane paradox", that is oversaturation of dissolved methane in oxic sea waters. However, the mechanism underlying the cleavage of C-P bonds during microbial degradation is not well understood. Using multi-labeled water isotope probing (MLWIP) and transcriptome analysis, we investigated the phosphate oxygen isotope systematics and mechanisms of microbial-mediated degradation of MPn in this study. In the aerobic culture containing MPn as the only phosphorus source, there was a significant release of inorganic phosphate (149.4 µmol/L) and free methane (268.3 mg/L). The oxygen isotopic composition of inorganic phosphorus (δ18OP) of accumulated released phosphate was 4.50‰, 23.96‰, and 40.88‰, respectively, in the corresponding 18O-labeled waters of -10.3‰, 9.9‰, and 30.6‰, and the slope obtained in plots of δ18OP versus the oxygen isotopic composition of water (δ18OW) was 0.89. Consequently, 89% of the oxygen atoms (Os) in phosphate (PO4) were exchanged with 18O-labeled waters in the medium, while the rest were exchanged with intracellular metabolic water. It has been confirmed that the C-P bond cleavage of MPn occurs in the cell with both ambient and metabolic water participation. Moreover, phn gene clusters play significant roles to cleave the C-P bond of MPn for Burkholderia sp. HQL1813, in which phnJ, phnM and phnI genes are significantly up-regulated during MPn decomposition to methane. In conclusion, the aerobic biotransformation of MPn to free methane by Burkholderia sp. HQL1813 has been elucidated, providing new insights into the mechanism that bio-cleaves C-P bonds to produce methane aerobically in aqueous environments for representative phosphonates.


Assuntos
Burkholderia , Água , Transcriptoma , Metano , Burkholderia/genética , Burkholderia/metabolismo , Fósforo , Fosfatos/química , Isótopos , Perfilação da Expressão Gênica , Oxigênio
6.
Sci Total Environ ; 829: 154611, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35307435

RESUMO

The Phosphorus (P) cycle is a crucial biochemical process in the earth system. However, an extensive increase of P input into watersheds destroyed the ecosystem. To explore the effects of internal P loading and external P input in global watersheds, we reviewed the research progress and synthesized the isotope data of experimental results from literatures. An integrated result of the observational and experimental studies revealed that both internal P and external P largely contribute to watershed P loadings in watersheds. Internal P can be released to the overlying water during sediment resuspension process and change of redox conditions near the sediment-water interface. Growing fertilizer application on farmlands to meet food demand with population rise and diet improvement contributed to an huge increase of external P input to watersheds. Therefore, water quality cannot be improved by only reducing internal P or external P loadings. In addition, we found that phosphate oxygen isotope technology is an effectively way to trace the P biogeochemical cycle in watersheds. To better predict the dynamic of P in watersheds, future research integrating oxygen isotope fractionation mechanisms and phosphate oxygen isotope technology would be more effective.


Assuntos
Ecossistema , Fósforo , Monitoramento Ambiental/métodos , Isótopos de Oxigênio , Fosfatos , Fósforo/análise
7.
J Environ Manage ; 279: 111618, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189420

RESUMO

The phosphate oxygen isotope (δ18OP) ratio has been proven to be an effective tool to trace the sources and biogeochemical cycles of phosphorus (P) in aquatic ecosystems. However, the enrichment of phosphate (PO4) and the removal of impurities are quite complex and easy to cause PO4 loss in current δ18OP analytical methods. Moreover, the δ18OP value obtained by the commonly-used instantaneous sampling method is more of the instantaneous information of P, which is accidental or uncertain for accurate identification of the P source. In this study, a new method of in situ enrichment, elution, and purification of PO4 (ISEEP) was developed for δ18OP analysis in waters. This method utilized a PO4 binding phase (Zr-Oxide gel) to selectively in situ adsorb PO4 in water and exhibited an adsorption capacity per unit area of up to 789.3 µg P/cm2. The PO4 on the gel was eluted easily with a 1 M NaOH solution. More than 99.7% of the common anions, cations, and dissolved organic matter (DOM), as well as more than 90% of the trace elements were removed synchronously after adsorption and elution of PO4. The recovery rate of PO4 in the whole procedure was as high as 92.8%. The XRD and SEM examinations showed that the ISEEP can obtain high-purity Ag3PO4 solid for the δ18OP measurement. The reliability of the ISEEP method is confirmed by the measured δ18OP value and standard deviation of parallel samples from different types of natural waters obtained by both the ISEEP and the current popular McLaughlin (2004) method. It provides a good prospect of this new method for tracing the P sources and their biogeochemical cycling in aquatic ecosystems.


Assuntos
Ecossistema , Fosfatos , Isótopos de Oxigênio/análise , Reprodutibilidade dos Testes , Água
8.
J Contam Hydrol ; 182: 194-209, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26409895

RESUMO

The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤1.8‰) occurred among HANPs populations during cotransport responding to IS and flow rate changes. This fractionation is most likely a result of hetero-aggregation between hematite and HANPs that favors light phosphate isotopes (P(16)O4). This interpretation is further supported by the increase in isotope fractionation at higher ISs (i.e., greater aggregation). However, the fractionation was progressively erased by decreasing flow rate, ascribed to the reduced mass transfer of HANPs between the influent and effluent. Together our findings suggest that the cotransport and retention of HANPs and hematite colloids are highly sensitive to the considered physicochemical factors, and isotope tracing could serve as a promising tool to identify the sources and transport of phosphate-based NPs in complex subsurface environments due to insignificant transport-related isotope fractionation.


Assuntos
Coloides/análise , Durapatita/análise , Compostos Férricos/análise , Modelos Teóricos , Nanopartículas/análise , Isótopos de Oxigênio/análise , Fracionamento Químico , Coloides/química , Durapatita/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Hidrologia/métodos , Cinética , Nanopartículas/química , Concentração Osmolar , Fosfatos/análise , Fosfatos/química , Porosidade , Dióxido de Silício/química
9.
J Contam Hydrol ; 154: 10-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055952

RESUMO

Characterizing reactivity and fate of contaminants in subsurface environments that are isolated from direct visualization is a major challenge. Stable isotopes coupled with concentration could be used as a potential tool to quantitatively analyze the chemical variability of the contaminant during reactive transport processes in the subsurface environment. This study was aimed at determining whether abiotic reactions of phosphate during its transport involve fractionation of oxygen isotopes in phosphate (δ(18)Op). It included the effects of solution chemistry and hydrodynamics on δ(18)Op values during phosphate transport through a packed-bed column prepared by using natural sediment collected from the Cape Cod aquifer in Massachusetts. Results show that the isotopic fractionation between effluent and influent phosphate at early stage of transport could be ~1.3‰ at higher flow rates with isotopically-light phosphate (P(16)O4) preferentially retained in the sediment column. This fractionation, however, decreased and became insignificant as more phosphate passed through the column. Mobilization of phosphate initially sorbed onto sediments caused a large kinetic isotopic fractionation with isotopically-light phosphate preferentially remobilized from the sediment column, but over longer time periods, this fractionation decreased and became insignificant as well. These results collectively suggest that abiotic reactive transport processes exert minimal influence on the δ(18)Op composition of subsurface systems. Alternatively, fluctuation in flow rate and subsequent remobilization of phosphate could be detectable through transient changes in δ(18)Op values. These findings extend the burgeoning application of δ(18)Op to identify the different sources and geochemical processes of phosphate in the subsurface environments.


Assuntos
Água Subterrânea/análise , Isótopos de Oxigênio/análise , Fosfatos/análise , Sedimentos Geológicos/química , Água Subterrânea/química , Massachusetts , Tamanho da Partícula , Águas Residuárias , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA