Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Bioresour Technol ; 406: 131081, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977037

RESUMO

Denitrifying phosphorus removal (DPR), which is dominated by denitrifying polyphosphate-accumulating organisms (DPAOs), is a promising process for nitrogen and phosphorus removal. Denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs typically coexist in the DPR sludge, complicating the study of DPAOs' denitrification capacity. In this study, two reactors were fed with nitrate and nitrite during the anoxic phase to cultivate nitrate-DPR and nitrite-DPR sludge. Both reactors yielded high and low DGAO abundance sludges, enabling the evaluation of the denitrification capacity of DPAOs. For the nitrate-DPR sludge, the nitrite reduction rate was 1.63 times higher than the nitrate reduction rate when DPAOs were the primary denitrifiers. For the nitrite-DPR sludge, the reduction rate of nitrite was more than three times that of nitrate, irrespective of DGAO abundance. These findings indicated that DPAOs preferred nitrite to nitrate and were well suited to reduce nitrite rather than reduce nitrate to supply nitrite.

2.
Environ Sci Technol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982970

RESUMO

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R2 value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R2 value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.

3.
Chemosphere ; : 142828, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992447

RESUMO

Despite the potential of sodium sulfide (Na2S) for phosphorus (P) recovery from iron-phosphate waste, the underlying mechanism regarding its impact on P conversion and product quality has not been well addressed. In this study, the effects of Na2S addition on P release and recovery from a chemical-enhanced phosphorus removal (CEPR) sludge during anaerobic fermentation were systematically investigated. The results revealed that the effective mobilization of P bound to Fe (Fe-P) by Na2S dominated the massive P release from the CEPR sludge, while the organic P (OP) release was not significantly enhanced during anaerobic fermentation. Due to the rapid reaction of Na2S with Fe-P and the prevention of Fe(II)-P precipitation by excess S2-, the Fe-P was decreased by 9.7%, 15.2% and 24.9% at S:Fe molar ratios of 0.3, 0.5 and 1, respectively. After anaerobic fermentation, the released P mainly existed as soluble phosphate (SP), P bound to Ca (Ca-P) and P bound to Al (Al-P). The nitrogen and P contents in the fermentation supernatant significantly increased with higher S:Fe ratios, facilitating the efficient recovery of P as high-purity struvite. However, the increased Na2S dosage deteriorated the sludge dewaterability because of the dissolution of hydrophilic extracellular polymeric substances and the looser secondary structure of proteins. Comprehensively considering the P recovery, sludge dewaterability and economic cost, the optimal Na2S dosage was determined at the S:Fe ratio of 0.3. These findings provide novel insights into the role of Na2S in P recovery as struvite from CEPR sludge.

4.
Bioresour Technol ; 406: 131008, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897547

RESUMO

This study investigated the nutrient removal and microbial community succession in moving bed biofilm reactor under stable and three levels of influent carbon/nitrogen (C/N) ratio fluctuation (± 10%, ± 20%, and ± 30%). Under the conditions of influent C/N ratio fluctuation, the removal efficiency of COD and PO43--P decreased 4.7-6.4% and 3.7-12.9%, respectively, while the nitrogen removal was almost unaffected. A sharp decrease in the content of culturable functional bacteria related to nitrogen and phosphorus removal including nitrite-oxidizing bacteria (NOB), aerobic denitrifying bacteria (DNB), and polyphosphate-accumulating organisms (PAOs) from the carrier biofilm was observed. Sequencing analysis revealed that the abundance of Candidatus Competibacter increased 10.3-25.9% and became the dominant genus responsible for denitrification, potentially indicating that nitrate was removed via endogenous denitrification under the influent C/N ratio fluctuation. The above results will provide basic data for the nutrient removal in decentralized wastewater treatment under highly variable influent conditions.

5.
J Hazard Mater ; 474: 134831, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850942

RESUMO

The effects of antibiotics, such as tetracycline, sulfamethoxazole, and ciprofloxacin, on functional microorganisms are of significant concern in wastewater treatment. This study observed that Acinetobacter indicus CZH-5 has a limited capacity to remove nitrogen and phosphorus using antibiotics (5 mg/L) as the sole carbon source. When sodium acetate was supplied (carbon/nitrogen ratio = 7), the average removal efficiencies of ammonia-N, total nitrogen, and orthophosphate-P increased to 52.46 %, 51.95 %, and 92.43 %, respectively. The average removal efficiencies of antibiotics were 84.85 % for tetracycline, 39.32 % for sulfamethoxazole, 18.85 % for ciprofloxacin, and 23.24 % for their mixtures. Increasing the carbon/nitrogen ratio to 20 further improved the average removal efficiencies to 72.61 % for total nitrogen and 97.62 % for orthophosphate-P (5 mg/L antibiotics). Additionally, the growth rate and pollutant removal by CZH-5 were unaffected by the presence of 0.1-1 mg/L antibiotics. Transcriptomic analysis revealed that the promoted translation of aceE, aarA, and gltA genes provided ATP and proton -motive forces. The nitrogen metabolism and polyphosphate genes were also affected. The expression of acetate kinase, dehydrogenase, flavin mononucleotide enzymes, and cytochrome P450 contributed to antibiotic degradation. Intermediate metabolites were investigated to determine the reaction pathways.


Assuntos
Acinetobacter , Antibacterianos , Nitrogênio , Fósforo , Poluentes Químicos da Água , Nitrogênio/metabolismo , Fósforo/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética , Acinetobacter/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Aerobiose , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
6.
Front Microbiol ; 15: 1424938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933032

RESUMO

Introduction: Simultaneous chemical phosphorus removal process using iron salts (Fe(III)) has been widely utilized in wastewater treatment to meet increasingly stringent discharge standards. However, the inhibitory effect of Fe(III) on the biological phosphorus removal system remains a topic of debate, with its precise mechanism yet to be fully understood. Methods: Batch and long-term exposure experiments were conducted in six sequencing batch reactors (SBRs) operating for 155 days. Synthetic wastewater containing various Fe/P ratios (i.e., Fe/P = 1, 1.2, 1.5, 1.8, and 2) was slowly poured into the SBRs during the experimental period to assess the effects of acute and chronic Fe(III) exposure on polyphosphate-accumulating organism (PAO) growth and phosphorus metabolism. Results: Experimental results revealed that prolonged Fe(III) exposure induced a transition in the dominant phosphorus removal mechanism within activated sludge, resulting in a diminished availability of phosphorus for bio-metabolism. In Fe(III)-treated groups, intracellular phosphorus storage ranged from 3.11 to 7.67 mg/g VSS, representing only 26.01 to 64.13% of the control. Although the abundance of widely reported PAOs (Candidatus Accumulibacter) was 30.15% in the experimental group, phosphorus release and uptake were strongly inhibited by high dosage of Fe(III). Furthermore, the abundance of functional genes associated with key enzymes in the glycogen metabolism pathway increased while those related to the polyphosphate metabolism pathway decreased under chronic Fe(III) stress. Discussion: These findings collectively suggest that the energy generated from polyhydroxyalkanoates oxidation in PAOs primarily facilitated glycogen metabolism rather than promoting phosphorus uptake. Consequently, the dominant metabolic pathway of communities shifted from polyphosphate-accumulating metabolism to glycogen-accumulating metabolism as the major contributor to the decreased biological phosphorus removal performance.

7.
Water Res ; 259: 121865, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851111

RESUMO

The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter. To address this gap, short and extended light cycle tests were conducted using a highly enriched Accumulibacter culture (95%) to evaluate its responses to illumination. Results showed that, after an initial period of adaptation to light conditions (approximately 4-5 h), Accumulibacter exhibited complete phosphorus (P) uptake by utilising polyhydroxyalkanoates (PHA), and additionally by consuming glycogen, which contrasted with its typical aerobic metabolism. Mass, energy, and redox balance analyses demonstrated that Accumulibacter needed to employ phototrophic metabolism to meet its energy requirements. Calculations revealed that the light reactions contributed to the generation of, at least more than 67% of the ATP necessary for P uptake and growth. Extended light tests, spanning 21 days with dark/light cycles, suggested that Accumulibacter generated ATP through light during initial operation, however, it likely reverted to conventional anaerobic/aerobic metabolism under dark/light conditions due to microalgal growth in the mixed culture, contributing to oxygen production. In contrast, extended light tests with an enriched Tetrasphaera culture, lacking phototrophic genes in its genome, clearly demonstrated that phototrophic P uptake did not occur. These findings highlight the adaptive metabolic capabilities of Accumulibacter, enabling it to utilise phototrophic pathways for energy generation during oxygen deprivation, which holds the potential to advance phototrophic-EBPR technology development.


Assuntos
Fósforo , Processos Fototróficos , Fósforo/metabolismo , Betaproteobacteria/metabolismo , Rhodocyclaceae/metabolismo , Luz , Poli-Hidroxialcanoatos/metabolismo , Glicogênio/metabolismo
8.
Environ Res ; 255: 119187, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777295

RESUMO

The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.


Assuntos
Carvão Vegetal , Ferro , Nitrogênio , Fósforo , Poluentes Químicos da Água , Fósforo/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Carvão Vegetal/química , Ferro/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos
9.
Environ Monit Assess ; 196(6): 576, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789652

RESUMO

Phosphorus pollution poses a significant challenge in addressing water contamination. The coagulant is one of the effective methods to remove phosphorus from wastewater. Abundant Al and Fe oxides in sludge residue make it have great potential to synthesize water treatment coagulants. However, the utilization of sludge residue for preparation of coagulant was seldom investigated. In this study, we fabricated a novel coagulant, polyaluminum ferric chloride (SM-PAC), using sludge residue as a raw material through acid leaching and polymerization processes. Characterization results confirm that the parameters of SM-PAC meet the specifications outlined in the national standard (GB/T 22627-2022). We investigated the effects of pH, dosage, initial phosphorus concentration, and contact time on the removal efficiency of SM-PAC. As anticipated, the prepared SM-PAC exhibited a significant efficacy in removing phosphorus, meeting the discharge standards set for municipal sewage. Furthermore, the adsorption kinetics analysis suggests that the predominant mode of phosphorus adsorption on SM-PAC is chemical adsorption. Furthermore, the SM-PAC was employed in the actual wastewater treatment plant and exhibited excellent efficiency in phosphorus removal. The utilization of SM-PAC can not only effectively address the issue of sludge disposal but also achieve the goal of "treating waste with waste." It is expected that the proposed method of reusing sludge residue as a resource can provide a sustainable way to synthesize a coagulant for phosphorus removal.


Assuntos
Fósforo , Reciclagem , Esgotos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Fósforo/análise , Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Reciclagem/métodos , Adsorção , Compostos Férricos/química , Águas Residuárias/química
10.
Bioresour Technol ; 402: 130789, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703961

RESUMO

Wastewater phosphorus removal achieved biologically is associated with the process known as enhanced biological phosphorus removal (EBPR). In contrast with canonical EBPR operations that employ alternating anaerobic-aerobic conditions and achieve asynchronous carbon and phosphorus storage, research herein focused on phosphorus removal achieved under aerobic conditions synchronously with volatile fatty acid (VFA) storage as polyhydroxybutyrate-co-valerate (PHBV). 90.3 ± 3.4 % soluble phosphorus removal was achieved from dairy manure fermenter liquor; influent and effluent concentrations were 38.6 ± 9.5 and 3.7 ± 0.8 mgP/L, respectively. Concurrently, PHBV yield ranged from 0.17 to 0.64 mgCOD/mgCOD, yielding 147-535 mgCODPHBV/L. No evidence of EBPR mechanisms was observed, nor were canonical phosphorus accumulating organisms present; additionally, the polyphosphate kinase gene was not present in the microbial biomass. Phosphorus removal was primarily associated with biomass growth and secondarily with biomass complexation. Results demonstrate that concurrent PHBV synthesis and phosphorus recovery can be achieved microbially under aerobic dynamic feeding conditions when fed nutrient rich wastewater.


Assuntos
Indústria de Laticínios , Esterco , Fósforo , Poliésteres , Aerobiose , Poliésteres/metabolismo , Fermentação , Animais , Reatores Biológicos , Biomassa , Biodegradação Ambiental , Ácidos Graxos Voláteis/metabolismo , Bovinos , Poli-Hidroxibutiratos
11.
Sci Total Environ ; 933: 173074, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734101

RESUMO

Rural domestic poses a significant challenge to treatment technologies due to significant fluctuations in both water quality, particularly in terms of carbon concentration, and quantity. Conventional biological technology, such as anaerobic-anoxic-oxic (A2O) systems, is inefficient. In this work, a continuous pilot-scale anoxic-anaerobic-anoxic-oxic (A3O) reactor with a moving bed biofilm reactor (MBBR) system was constructed and optimized to improve the treatment efficiency of rural domestic wastewater. The sludge return ratio, volume ratio of the oxic-to-anoxic zone (Voxi/Vano), step-feeding and hydraulic retention time (HRT) at low temperature were considered the main parameters for optimization. Microbial analysis was performed on both the mixed liquor and carrier of the A3O-MBBR system under initial and post-optimized conditions. The results indicated that the A3O-MBBR improved the treatment efficiency of rural domestic wastewater, especially for total phosphorus (TP), which increased by 20 % compared with that of the A2O-MBR. In addition, the removal efficiencies of nitrogen and phosphorus were further optimized, and the average concentrations of total nitrogen (TN) and TP in the effluent reached 2.46 and 0.364 mg/L, respectively, at a sludge reflux ratio of 100 or 150 %, Voxi/Vano =200 %, step-feeding of 0.5Q/0.5Q (anaerobic/anoxic) and HRT of 15 h at low temperature in the A3O-MBBR, which met standard A of GB18918-2002, China (TN < 15 mg/L, TP < 0.5 mg/L). The average rate of attaining the standard increased by 58.63 % (post optimization). The microbial analysis showed an increase in species diversity and richness after the parameters were optimized. Moreover, compared to the microbial community structure before optimization, the post-optimization exhibited a more stable microbial structure with a significant enrichment of functional bacteria. Defluviimonas, Novosphingobium and Bifidobacterium, considered as the dominant nitrification or denitrifying bacteria, were enriched in the suspended sludge of the MBBR reactor, which the relative abundance increased by 3.11 %, 3.84 %, and 3.24 %, respectively. Further analysis of the microbial community in the carrier revealed that the abundance of Nitrospira and the denitrifying bacteria carried by the carrier were much greater than those in the suspended sludge. Consequently, the microorganism cooperation between suspended sludge and biofilm might be responsible for the improved performance of the optimized A3O-MBBR.


Assuntos
Biofilmes , Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Anaerobiose , Projetos Piloto , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
12.
Chemosphere ; 358: 142270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719126

RESUMO

To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.


Assuntos
Chlorella , Ácidos Graxos Voláteis , Processos Heterotróficos , Microalgas , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo , Nitrogênio/metabolismo , Microalgas/metabolismo , Águas Residuárias/química , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Esgotos/microbiologia , Biomassa , Desnitrificação , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental
13.
ISME Commun ; 4(1): ycae049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38808122

RESUMO

Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.

14.
Sci Total Environ ; 933: 173302, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38759923

RESUMO

Carbon metabolism and nutrient removal are crucial for biological wastewater treatment. This study focuses on analyzing carbon allocation and utilization by heterotrophic bacteria in response to increasing COD concentration in the influent. The study also assesses the effect of denitrification and biological phosphorus removal, particularly in combination with anaerobic ammonia oxidation (anammox). The experiment was conducted in a SBR operating under anaerobic/anoxic/oxic conditions. As COD concentration in the influent increased from 100 to 275 mg/L, intracellular COD accounted for 95.72 % of the COD removed. By regulating the NO3- concentration in the anoxic stage from 10 to 30 mg/L, the nitrite accumulation rate reached 69.46 %, which could serve as an electron acceptor for anammox. Most genes related to the tricarboxylic acid (TCA) cycle declined, while the genes involved in the glyoxylate cycle, gluconeogenesis, PHA synthesis increased. This suggests that glycogen accumulation and carbon storage, rather than direct carbon oxidation, was the dominant pathway for carbon metabolism. However, the genes responsible for the reduction of NO2--N (nirK) and NO (nosB) decreased, contributing to NO2- accumulation. The study also employed metagenomic analysis to reveal microbial interactions. The enrichment of specific bacterial species, including Dechloromonas sp. (D2.bin.10), Ca. Competibacteraceae bacterium (D9.bin.8), Ca. Desulfobacillus denitrificans (D6.bin.17), and Ignavibacteriae bacterium (D3.bin.9), played a collaborative role in facilitating nutrient removal and promoting the combination with anammox.


Assuntos
Bactérias , Carbono , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Carbono/metabolismo , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Desnitrificação , Águas Residuárias/microbiologia , Processos Heterotróficos , Reatores Biológicos/microbiologia
15.
Chemosphere ; 358: 142202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692361

RESUMO

Desalination reverse osmosis reject brine-based porous geopolymer (RO/GP) was produced and investigated as an improved adsorbent for phosphorus (P) removal from tainted seawater, brackish water, river water, and municipal wastewater effluent. The RO reject brine/geopolymer was produced by reacting metakaolin and fly ash with a Na-alkali activator and anhydrous RO brine as a sacrificial template. The influence of RO reject brine content on water absorption, porosity, mechanical, and structural properties were examined. The developed RO-based geopolymers exhibited the greatest porosity (58.3-84.2 % vol%), a significant ratio of open porosity to total porosity (67.7-92.1 %), and outstanding compression strength (3.6-10.4 MPa). The produced RO/GP structure has an adsorption capacity of 92.4 mg-P/g. The sequestration reaction of phosphorus by RO/GP is of pseudo-second-order kinetic behavior via Chi-squared (χ2), RMSE, and determination coefficient (R2) values. Regarding their agreement with Langmuir behavior, the phosphorus adsorption uptakes occur in homogeneous and monolayer states. The reaction is exothermic, spontaneous, and favorable. The RO/GP exhibits significant affinity for phosphorus co-existing with Cl-, Na+, SO42-, K+, HCO3-, and Ca2+. The RO/GP shows high safety during the adsorption investigation, with a total cost of 0.32 $/kg-P.


Assuntos
Fósforo , Sais , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Fósforo/química , Porosidade , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Águas Residuárias/química , Sais/química , Polímeros/química , Água do Mar/química , Cinética , Osmose
16.
Water Res ; 256: 121581, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614032

RESUMO

The autotrophic denitrification of coupled sulfur and natural iron ore can remove nitrogen and phosphorus from wastewater with low C/N ratios. However, the low solubility of crystalline Fe limits its bioavailability and P absorption capacity. This study investigated the effects of amorphous Fe in drinking water treatment residue (DWTR) and crystalline Fe in red mud (RM) on nitrogen and phosphorus removal during sulfur autotrophic processes. Two types of S-Fe cross-linked filler particles with three-dimensional mesh structures were obtained by combining sulfur with the DWTR/RM using the hydrogel encapsulation method. Two fixed-bed reactors, sulfur-DWTR autotrophic denitrification (SDAD) and sulfur-RM autotrophic denitrification (SRAD), were constructed and stably operated for 236 d Under a 5-8-h hydraulic retention time, the average NO3--N, TN, and phosphate removal rates of SDAD and SRAD were 99.04 %, 96.29 %, 94.03 % (SDAD) and 97.33 %, 69.97 %, 82.26 % (SRAD), respectively. It is important to note that fermentative iron-reducing bacteria, specifically Clostridium_sensu_stricto_1, were present in SDAD at an abundance of 58.17 %, but were absent from SRAD. The presence of these bacteria facilitated the reduction of Fe (III) to Fe (II), which led to the complete denitrification of the S-Fe (II) co-electron donor to produce Fe (III), completing the iron cycle in the system. This study proposes an enhancement method for sulfur autotrophic denitrification using an amorphous Fe substrate, providing a new option for the efficient treatment of low-C/N wastewater.


Assuntos
Processos Autotróficos , Desnitrificação , Ferro , Nitrogênio , Fósforo , Enxofre , Fósforo/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Ferro/metabolismo , Ferro/química , Reatores Biológicos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
17.
Sci Total Environ ; 927: 172313, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593871

RESUMO

The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.


Assuntos
Reatores Biológicos , Cianobactérias , Fósforo , Eliminação de Resíduos Líquidos , Fósforo/metabolismo , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Reatores Biológicos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Aerobiose
18.
Environ Sci Pollut Res Int ; 31(22): 31691-31730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649601

RESUMO

Phosphorus to an optimum extent is an essential nutrient for all living organisms and its scarcity may cause food security, and environmental preservation issues vis-à-vis agroeconomic hurdles. Undesirably excess phosphorus intensifies the eutrophication problem in non-marine water bodies and disrupts the natural nutrient balance of the ecosystem. To overcome such dichotomy, biodegradable polymer-based adsorbents have emerged as a cost-effective and implementable approach in striking a "desired optimum-undesired excess" balance pertaining to phosphate in a sustainable manner. So far, the reports on adopting such adsorbent-approach for wastewater remediation remained largely scattered, unstructured, and poorly correlated. In this background, the contextual review comprehensively discusses the current state-of-the-art in utilizing biodegradable polymeric frameworks as an adsorbent system for phosphate removal and its efficient recovery from the aquatic ecosystem, while highlighting their characteristics-specific functional efficiency vis-à-vis easiness of synthetic and commercial viability. The overview further delves into the sources and environmental ramifications of excessive phosphorus in water bodies and associated mechanistic pathways of phosphorus removal via adsorption, precipitation, and membrane filtration enabled by biodegradable (natural and synthetic) polymeric substrates. Finally, functionality optimization, degradability tuning, and adsorption selectivity of biodegradable polymers are highlighted, while aiming to strike a balance in "removal-recovery-reuse" dynamics of phosphate. Thus, the current review not only paves the way for future exploration of biodegradable polymers in sustainable cost-effective adsorbents for phosphorus removal but also can serve as a guide for researchers dealing with this critical issue.


Assuntos
Fosfatos , Polímeros , Águas Residuárias , Fosfatos/química , Águas Residuárias/química , Adsorção , Polímeros/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
19.
Environ Res ; 252(Pt 2): 118924, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631473

RESUMO

Nitrite, as an electron acceptor, plays a good role in denitrifying phosphorus removal (DPR); however, high nitrite concentration has adverse affects on sludge performance. We investigated the precise mechanisms of responses of sludge to high nitrite stress, including surface characteristics, intracellular and extracellular components, microbial and metabolic responses. When the nitrite stress reached 90 mg/L, the sludge settling performance was improved, but the activated sludge was aging. FTIR and XPS analysis revealed a significant increase in the hydrophobicity of the sludge, resulting in improve settling performance. However, the intracellular carbon sources synthesis was inhibited. In addition, the components in the tightly bound extracellular polymeric substances (TB-EPS) of sludge were significantly reduced and indicated the disturb of metabolism. Notably, Exiguobacterium emerged as a new genus when face high nitrite stress that could maintaining survival in hostile environments. Moreover, metabolomic analysis demonstrated strong biological response to nitrite stress further supported above results that include the inhibited of carbohydrate and amino acid metabolism. More importantly, some lipids (PS, PA, LysoPA, LysoPC and LysoPE) were significantly upregulated that related enhanced membrane lipid remodeling. The comprehensive analyses provide novel insights into the high nitrite stress responses mechanisms in activated sludge systems.


Assuntos
Desnitrificação , Metabolômica , Nitritos , Fósforo , Esgotos , Esgotos/microbiologia , Nitritos/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Microbiota/efeitos dos fármacos , Reatores Biológicos/microbiologia
20.
Environ Sci Pollut Res Int ; 31(16): 24360-24374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443536

RESUMO

Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.


Assuntos
Magnésio , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Fósforo , Reatores Biológicos , Nitrogênio , Excipientes , Biofilmes , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...