Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc SPIE Int Soc Opt Eng ; 100472017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28690354

RESUMO

Uniform delivery of light fluence is an important goal for photodynamic therapy. We present summary results for an infrared (IR) navigation system to deliver light dose uniformly during intracavitory PDT by tracking the movement of the light source and providing real-time feedback on the light fluence rate on the entire cavity surface area. In the current intrapleural PDT protocol, 8 detectors placed in selected locations in the pleural cavity monitor the light doses. To improve the delivery of light dose uniformity, an IR camera system is used to track the motion of the light source as well as the surface contour of the pleural cavity. A MATLAB-based GUI program is developed to display the light dose in real-time during PDT to guide the PDT treatment delivery to improve the uniformity of the light dose. A dualcorrection algorithm is used to improve the agreement between calculations and in-situ measurements. A comprehensive analysis of the distribution of light fluence during PDT is presented in both phantom conditions and in clinical cases.

2.
Proc SPIE Int Soc Opt Eng ; 75512010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26005243

RESUMO

This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area. The accuracy of treatment delivery is analyzed as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here are enrolled in a Phase I clinical trial of HPPH-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. Patients are administered 4mg per kg body weight HPPH 24-48 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with light therapy with a fluence of 15-60 J/cm2 at 661nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) is monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors are used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 15%. The mean fluence rate delivery and treatment time are recorded. A correlation between the treatment time and the treatment volume is established. The result can be used as a clinical guideline for future pleural PDT treatment.

3.
Proc SPIE Int Soc Opt Eng ; 71642009 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-25914792

RESUMO

In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is one of the critical dosimetry quantities for predicting PDT outcome. This study examines the relationship between the PDT treatment time and thoracic treatment volume and surface area for patients undergoing pleural PDT. In addition, the mean light fluence (rate) and its accuracy were quantified. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 years old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm2 at 630nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate deliver varied from 37.84 to 94.05 mW/cm2 and treatment time varied from 1762 to 5232s. We found a linear correlation between the total treatment time and the treatment area: t (sec) = 4.80 A (cm2). A similar correlation exists between the treatment time and the treatment volume: t (sec) = 2.33 V (cm3). The results can be explained using an integrating sphere theory and the measured tissue optical properties assuming that the saline liquid has a mean absorption coefficient of 0.05 cm-1. Our long term accuracy studies confirmed light fluence rate measurement accuracy of ±10%. The results can be used as a clinical guideline for future pleural PDT treatment.

4.
Proc SPIE Int Soc Opt Eng ; 61392006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26113757

RESUMO

Optimal delivery of light in photodynamic therapy (PDT) requires not only optimal placement and power of light sources, but knowledge of the dynamics of light propagation in the tissue being treated and in the surrounding normal tissue, and of their respective accumulations of sensitizer. In an effort to quantify both tissue optical properties and sensitizer distribution, we have measured fluorescence emission and diffuse reflectance spectra at the surface of a variety of tissue types in the thoracic cavities of human patients. The patients studied here were enrolled in Phase II clinical trials of Photofrin-mediated PDT for the treatment of non-small cell lung cancer and cancers with pleural effusion. Patients were given Photofrin at dose of 2 mg per kg body weight 24 hours prior to treatment. Each patient received surgical resection of the affected lung and pleura. Patients received intracavity PDT at 630nm to a dose of 30 J/cm2, as determined by isotropic detectors sutured to the cavity walls. We measured the diffuse reflectance spectra before and after PDT in various positions within the cavity, including tumor, diaphragm, pericardium, skin, and chest wall muscle in 5 patients. The measurements we acquired using a specially designed fiber optic-based probe consisting of one fluorescence excitation fiber, one white light delivery fiber, and 9 detection fibers spaced at distances from 0.36 to 7.8 mm from the source, all of which are imaged via a spectrograph onto a CCD, allowing measurement of radially-resolved diffuse reflectance and fluorescence spectra. The light sources for these two measurements (a 403-nm diode laser and a halogen lamp, respectively) were blocked by computer-controlled shutters, allowing sequential fluorescence, reflectance, and background acquisition. The diffuse reflectance was analyzed to determine the absorption and scattering spectra of the tissue and from these, the concentration and oxygenation of hemoglobin and the local drug uptake. The total hemoglobin concentration in normal tissues varied from 50 to 300 µM, and the oxygen saturation was generally above 60%. One tumor measured exhibited higher hemoglobin concentration and lower saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA