Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.434
Filtrar
1.
Mol Plant ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38894538

RESUMO

Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls the plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We show that CO can activate key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5 repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.

2.
Heliyon ; 10(11): e31900, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841447

RESUMO

Commercial microalgae cultivation is a dynamic field with ongoing efforts to improve efficiency, reduce costs, and explore new applications. We conducted a study to examine how different light exposure periods affect Chlorella vulgaris's growth. We employed a Phyto tank batch system of approximately 3.5 L with LED light control, controlled airflow, and sterilized bags, maintained at 22.0 ± 2.0 °C indoors. Various methods, including spectrophotometry, and cell counter were employed to monitor Chlorella vulgaris growth under different light exposure cycles. Additionally, quality analysis as feed source was employed by proximate, amino acid, beta-glucan, and microbial content analysis. The results revealed significant variations in C. vulgaris biomass production based on light exposure duration. Notably, the 16:8-h light-dark photoperiod exhibited the highest biomass concentration, reaching 6.48 × 107 ± 0.50 cells/mL with an optical density (OD) of 1.165 absorbance at 682 nm. The 12:12-h light-dark photoperiod produced the second-highest biomass concentration, with 2.305 × 106 ± 0.60 cells/mL at an OD of 0.489. Proximate analysis of dry algae powder revealed low lipid content (0.48 %), high protein content (37.61 %), variable ash concentration (average 10.75 %), and a significant carbohydrate fraction (51.16 %) during extended daylight and shorter dark periods. Amino acid analysis identified nine essential amino acids, with glutamic acid being the most abundant (17.7 %) and methionine the least (0.4 %). Furthermore, quality analysis and microbiological assays demonstrated that the C. vulgaris biomass is well-suited for fish and livestock use as a feed source and possibility as human nutraceuticals. These findings can be considered more environmentally friendly and ethically sound due to the absence of genetic modification.

3.
J Integr Plant Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869305

RESUMO

Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants. The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins. FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans. In this study, we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity, while GmFULc knockout mutants exhibited late maturity. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that GmFULc could bind to the CArG, bHLH and homeobox motifs. Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes. Overexpression of GmZTL4 promoted soybean maturity, whereas the ztl4 mutants exhibited delayed maturity. Moreover, we found that the cis element box 4 motif of the GmZTL4 promoter, a motif of light response elements, played an important role in controlling the growth period. Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4. Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb, ultimately resulting in the promotion of flowering and early maturation. Taken together, these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.

4.
J Biol Rhythms ; : 7487304241256004, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845380

RESUMO

Daily rhythms are programmed by a central circadian clock that is modulated by photoperiod. Here, we recorded locomotor activity rhythms in C57Bl/6 or mPer2Luc mice of both sexes held under different housing conditions. First, we confirm that the structure of locomotor activity rhythms differs between male and female mice in both genetic backgrounds. Male mice exhibit a nightly "siesta," whereas female mice fluctuate between nights with and without a nightly siesta, which corresponds with changes in locomotor activity levels, circadian period, and vaginal cytology. The nightly siesta is modulated by the presence of a running wheel in both sexes but is not required for the infradian patterning of locomotor rhythms in females. Finally, photoperiodic changes in locomotor rhythms differed by sex, and females displayed phase-jumping responses earlier than males under a parametric photoentrainment assay simulating increasing day length. Collectively, these results highlight that sex and sex hormones influence daily locomotor rhythms under a variety of different environmental conditions.

5.
Poult Sci ; 103(8): 103769, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38917605

RESUMO

Magang geese are typical short-day breeders whose reproductive behaviors are significantly influenced by photoperiod. Exposure to a long-day photoperiod results in testicular regression and spermatogenesis arrest in Magang geese. To investigate the epigenetic influence of DNA methylation on the seasonal testicular regression in Magang geese, we conducted whole-genome bisulfite sequencing and transcriptome sequencing of testes across 3 reproductive phases during a long-day photoperiod. A total of 250,326 differentially methylated regions (DMR) were identified among the 3 comparison groups, with a significant number showing hypermethylation, especially in intronic regions of the genome. Integrating bisulfite sequencing with transcriptome sequencing data revealed that DMR-associated genes tend to be differentially expressed in the testes, highlighting a potential regulatory role for DNA methylation in gene expression. Furthermore, there was a significant negative correlation between changes in the methylation of CG DMRs and changes in the expression of their associated genes in the testes. A total of 3,359 DMR-associated differentially expressed genes (DEG) were identified; functional enrichment analyses revealed that motor proteins, MAPK signaling pathway, ECM-receptor interaction, phagosome, TGF-beta signaling pathway, and calcium signaling might contribute to the testicular regression process. GSEA revealed that the significantly enriched activated hallmark gene set was associated with apoptosis and estrogen response during testicular regression, while the repressed hallmark gene set was involved in spermatogenesis. Our study also revealed that methylation changes significantly impacted the expression level of vitamin A metabolism-related genes during testicular degeneration, with hypermethylation of STRA6 and increased calmodulin levels indicating vitamin A efflux during the testicular regression. These findings were corroborated by pyrosequencing and real-time qPCR, which revealed that the vitamin A metabolic pathway plays a pivotal role in testicular degeneration under long-day conditions. Additionally, metabolomics analysis revealed an insufficiency of vitamin A and an abnormally high level of oxysterols accumulated in the testes during testicular regression. In conclusion, our study demonstrated that testicular degeneration in Magang geese induced by a long-day photoperiod is linked to vitamin A homeostasis disruption, which manifests as the hypermethylation status of STRA6, vitamin A efflux, and a high level of oxysterol accumulation. These findings offer new insights into the effects of DNA methylation on the seasonal testicular regression that occurs during long-day photoperiods in Magang geese.

6.
Ecology ; 105(7): e4359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877760

RESUMO

An understanding of thermal limits and variation across geographic regions is central to predicting how any population may respond to global change. Latitudinal clines, in particular, have been used to demonstrate that populations can be locally adapted to their own thermal environment and, as a result, not all populations will be equally impacted by an increase in temperature. But how robust are these signals of thermal adaptation to the other ecological challenges that animals commonly face in the wild? Seasonal changes in population density, food availability, or photoperiod are common ecological challenges that could disrupt patterns of thermal tolerance along a cline if each population differentially used these signals to anticipate future temperatures and adjust their thermal tolerances accordingly. In this study, we aimed to test the robustness of a cline in thermal tolerance to simulated signals of seasonal heterogeneity. Experimental animals were derived from clones of the Australian water flea, Daphnia carinata, sampled from nine distinct populations along a latitudinal transect in Eastern Australia. We then factorially combined summer (18 h light, 6 h dark) and winter (6 h light, 18 h dark) photoperiods with high (5 million algal cells individual-1 day-1) and low (1 million algal cells individual-1 day-1) food availabilities, before performing static heat shock assays to measure thermal tolerance. We found that the thermal tolerances of the clonal populations were sensitive to both measures of seasonal change. In general, higher food availability led to an increase in thermal tolerances, with the magnitude of the increase varying by clone. In contrast, a switch in photoperiod led to rank-order changes in thermal tolerances, with heat resistance increasing for some clones, and decreasing for others. Heat resistance, however, still declined with increasing latitude, irrespective of the manipulation of seasonal signals, with clones from northern populations always showing greater thermal resistance, most likely driven by adaptation to winter thermal conditions. While photoperiod and food availability can clearly shape thermal tolerances for specific populations, they are unlikely to overwhelm overarching signals of thermal adaptation, and thus, observed clines in heat resistance will likely have remained robust to these forms of seasonal heterogeneity.


Assuntos
Daphnia , Estações do Ano , Animais , Daphnia/fisiologia , Mudança Climática , Temperatura Alta , Termotolerância , Demografia , Modelos Biológicos
7.
Plants (Basel) ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931102

RESUMO

We investigated the effect of supplemental CO2, gibberellic acid (GA3), and light on the quality and yield of Humulus lupulus L. strobili (cones). When applied separately, CO2 and light increased the yield by 22% and 43%, respectively, and had a significant effect on the components of cone mass and quality. Exogenous GA3 increased flower set; however, the yield decreased by approximately 33%. Combining CO2, GA3, and light, and any combination thereof, resulted in significant increases in flower set and cone yield enhancement compared to separate applications. A synergistic effect occurred when some factors were combined. For example, the combination of CO2 and light resulted in a yield increase of approximately 122%. The combination of all three resources, CO2, GA3, and light, resulted in an approximate 185% yield increase per plant. Thus, in comparison to the addition of one supplementary resource, a greater increase in yield resulted from the combination of two or more supplemental resources. Flower set stimulation due to GA3 decreased cone alpha- and beta-acid quality attributes, unless combined with CO2 and light as additional carbohydrate-generating resources. Additional research is needed to close the hop yield gap between current hop yields and the achievement of the plant's genetic potential.

8.
Insect Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728615

RESUMO

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

9.
J Insect Physiol ; 155: 104654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796055

RESUMO

Thermal effects on photoperiodic time measurement and accumulation of inductive photoperiods have been studied in many insect species whereas the influence of temperature on the last step of the photoperiodic response, the induction of diapause, received less attention from researchers. We investigated thermal modification of the maternal photoperiodic response in Trichogramma telengai (Hymenoptera: Trichogrammatidae). Even a single long-night photoperiod experienced by females of this minute egg parasitoid immediately before oviposition causes a substantial increase in larval diapause incidence in the progeny. This feature allows separation of the thermal effects on different steps of the diapause-inducing photoperiodic response. Laboratory experiments showed that the temperature of the last scotophase (when the final decisive photoperiodic time measurement occurs) caused an inverted U-shaped diapause-inducing response similar to that observed in some other long-day insects. The temperature of the last photophase (when progeny diapause is induced) had a positive linear effect that has not been reported for the induction of winter diapause in any long-day insect. Most probably, such a thermal response is not a specific seasonal adaptation but a direct consequence of the influence of temperature on the rate of metabolism.


Assuntos
Diapausa de Inseto , Fotoperíodo , Temperatura , Animais , Feminino , Vespas/fisiologia , Larva/fisiologia , Larva/crescimento & desenvolvimento
10.
Curr Biol ; 34(11): 2330-2343.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38781956

RESUMO

Photoperiod insensitivity has been selected by breeders to help adapt crops to diverse environments and farming practices. In wheat, insensitive alleles of Photoperiod-1 (Ppd-1) relieve the requirement of long daylengths to flower by promoting expression of floral promoting genes early in the season; however, these alleles also limit yield by reducing the number and fertility of grain-producing florets through processes that are poorly understood. Here, we performed transcriptome analysis of the developing inflorescence using near-isogenic lines that contain either photoperiod-insensitive or null alleles of Ppd-1, during stages when spikelet number is determined and floret development initiates. We report that Ppd-1 influences the stage-specific expression of genes with roles in auxin signaling, meristem identity, and protein turnover, and analysis of differentially expressed transcripts identified bZIP and ALOG transcription factors, namely PDB1 and ALOG1, which regulate flowering time and spikelet architecture. These findings enhance our understanding of genes that regulate inflorescence development and introduce new targets for improving yield potential.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Fotoperíodo , Proteínas de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética
11.
J Exp Bot ; 75(13): 3762-3777, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38779909

RESUMO

Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa). We introduce the mechanisms by which photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. We also discuss the prospects for designing different combinations of heading date genes and other cold tolerance or thermo-tolerance genes to help rice better adapt to changes in light and temperature via molecular breeding to enhance yield in the future.


Assuntos
Oryza , Fotoperíodo , Temperatura , Oryza/genética , Oryza/fisiologia , Oryza/efeitos da radiação , Flores/fisiologia , Flores/crescimento & desenvolvimento , Flores/genética , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas
12.
Foods ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790844

RESUMO

Plant factories offer a promising solution to some of the challenges facing traditional agriculture, allowing for year-round rapid production of plant-derived foods. However, the effects of conditions in plant factories on metabolic nutrients remain to be explored. In this study, we used three rice accessions (KongYu131, HuangHuaZhan, and Kam Sweet Rice) as objectives, which were planted in a plant factory with strict photoperiods that are long-day (12 h light/12 h dark) or short-day (8 h light/16 h dark). A total of 438 metabolites were detected in the harvested rice grains. The difference in photoperiod leads to a different accumulation of metabolites in rice grains. Most metabolites accumulated significantly higher levels under the short-day condition than the long-day condition. Differentially accumulated metabolites were enriched in the amino acids and vitamin B6 pathway. Asparagine, pyridoxamine, and pyridoxine are key metabolites that accumulate at higher levels in rice grains harvested from the short-day photoperiod. This study reveals the photoperiod-dependent metabolomic differences in rice cultivated in plant factories, especially the metabolic profiling of taste- and nutrition-related compounds.

13.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38800960

RESUMO

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Assuntos
Carpas , Kisspeptinas , Melatonina , Fotoperíodo , Maturidade Sexual , Animais , Melatonina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/genética , Feminino , Carpas/metabolismo , Carpas/genética , Carpas/crescimento & desenvolvimento , Carpas/fisiologia , Maturidade Sexual/fisiologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética
14.
Cell Tissue Res ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771348

RESUMO

The saccus vasculosus is an organ present in gnathostome fishes, located ventral to the hypothalamus and posterior to the pituitary gland, whose structure is highly variable among species. In some fishes, this organ is well-developed; however, its physiological function is still under debate. Recently, it has been proposed that this organ is a seasonal regulator of reproduction. In the present work, we examined the histology, ultrastructure, and development of the saccus vasculosus in Cichlasoma dimerus. In addition, immunohistochemical studies of proteins related to reproductive function were performed. Finally, the potential response of this organ to different photoperiods was explored. C. dimerus presented a well-developed saccus vasculosus consisting of a highly folded epithelium, composed of coronet and supporting cells, closely associated with blood vessels, and a highly branched lumen connected to the third ventricle. Coronet cells showed all the major characteristics described in other fish species. In addition, some of the vesicles of the globules were positive for thyrotropin beta subunit, while luteinizing hormone beta subunit immunostaining was observed at the edge of the apical processes of some coronet cells. Furthermore, neuropeptide Y and gonadotropin inhibitory hormone innervation in the saccus vasculosus of C. dimerus were shown. Finally, animals exposed to the long photoperiod showed lower levels of thyrotropin beta and common alpha subunits expression in the saccus compared to those of animals exposed to short photoperiod. All these results support the hypothesis that the saccus vasculosus is involved in the regulation of reproductive function in fish.

15.
Planta ; 259(6): 150, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727772

RESUMO

MAIN CONCLUSION: The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Humulus , Fotoperíodo , Folhas de Planta , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Humulus/genética , Humulus/crescimento & desenvolvimento , Humulus/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Brasil , MicroRNAs/genética , MicroRNAs/metabolismo , Clima Tropical
16.
Biology (Basel) ; 13(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38785840

RESUMO

The current study aims to identify candidate insertion/deletion (INDEL) markers associated with photoperiod sensitivity (PS) in rice landraces from the Vietnamese Mekong Delta. The whole-genome sequencing of 20 accessions was conducted to analyze INDEL variations between two photoperiod-sensitivity groups. A total of 2240 INDELs were identified between the two photoperiod-sensitivity groups. The selection criteria included INDELs with insertions or deletions of at least 20 base pairs within the improved rice group. Six INDELs were discovered on chromosomes 01 (5 INDELs) and 6 (1 INDEL), and two genes were identified: LOC_Os01g23780 and LOC_Os01g36500. The gene LOC_Os01g23780, which may be involved in rice flowering, was identified in a 20 bp deletion on chromosome 01 from the improved rice accession group. A marker was devised for this gene, indicating a polymorphism rate of 20%. Remarkably, 20% of the materials comprised improved rice accessions. This INDEL marker could explain 100% of the observed distinctions. Further analysis of the mapping population demonstrated that an INDEL marker associated with the MADS-box gene on chromosome 01 was linked to photoperiod sensitivity. The F1 population displayed two bands across all hybrid individuals. The marker demonstrates efficacy in distinguishing improved rice accessions within the indica accessions. This study underscores the potential applicability of the INDEL marker in breeding strategies.

17.
Sci Total Environ ; 934: 173280, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768721

RESUMO

Simulating the timing of leaf fall in large scale is crucial for accurate estimation of ecosystem carbon sequestration. However, the limited understanding of leaf senescence mechanisms often impedes the accuracy of simulation and prediction. In this study, we employed the advanced process-based models to fit remote sensing-derived end dates of the growing season (EOS) across deciduous broadleaf forests in the Northern Hemisphere, and revealed the spatial pattern associated with two leaf senescence pathways (i.e., either photoperiod- or temperature- initiated leaf senescence) and their potential effects on EOS prediction. The results show that the pixel-specific optimum models effectively fitted all EOS time series. Leaf senescence in 67.6 % and 32.4 % of pixels was initiated by shortening daylength and declining temperature, respectively. Shortening daylength triggered leaf senescence occurs mainly in areas with shorter summer daylength and/or warmer autumns, whereas declining temperature induced leaf senescence appears primarily in areas with longer summer daylength and/or colder autumns. The strong dependence of leaf senescence initiation cues on local temperature conditions implies that the ongoing increase in autumn temperature has the potential to alter the leaf senescence initiation, shifting from temperature cues to photoperiod signals. This shift would occur in 26.2-49.6 % of the areas where leaf senescence is initiated by declining temperature under RCP 4.5 and 8.5 scenarios, while forest areas where leaf senescence is induced by shortening daylength may expand northward. The overall delaying of the currently predicted EOS would therefore slow down by 4.5-10.3 % under the two warming scenarios. This implies that the adaptive nature of plants will reduce the overestimation of changes in carbon exchange capacity between ecosystems and atmosphere. Our study offers novel insights into understanding the mechanism of leaf senescence and improving the estimation of autumn phenology and ecosystem carbon balance in the deciduous broadleaf forests.


Assuntos
Florestas , Folhas de Planta , Estações do Ano , Temperatura , Folhas de Planta/fisiologia , Senescência Vegetal , Árvores/fisiologia , Tecnologia de Sensoriamento Remoto , Sequestro de Carbono , Fotoperíodo
18.
Biol Futur ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744795

RESUMO

Photoperiod sensitivity in rice cultivars is defined when the cultivar begins anthesis on a relatively invariant date, varying by < 7 days, regardless of the date of sowing or germination. While the date of flowering in photoperiod sensitive (PPS) rice cultivars is characteristically determined by the day length, especially during the short-day season (September-December), the response of the flower opening time (FOT) to photoperiod remains hitherto unexplored. This paper examines whether day length restrains year-to-year variation in FOT in PPS cultivars. We examined 105 PPS and 173 photoperiod insensitive (PPI) cultivars grown in different years and estimated their year-to-year FOT difference (or FOTD) and the year-to-year difference of sunrise to anthesis duration (or SADD). Wilcoxon signed rank test and bootstrap test were then performed to test whether these descriptors significantly differed between PPS and PPI groups of cultivars. The means of FOTD and SADD were detected to be significantly less in the PPS group than in the PPI group of cultivars, indicating significantly lesser variability of FOT in PPS than in PPI cultivars. This is the first report of a strong restraining influence of photoperiod on FOT variability in PPS cultivars.

19.
Dev Cell ; 59(13): 1750-1763.e4, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38688276

RESUMO

Photoperiod sensitivity is crucial for soybean flowering, adaptation, and yield. In soybean, photoperiod sensitivity centers around the evening complex (EC) that regulates the transcriptional level of the core transcription factor E1, thereby regulating flowering. However, little is known about the regulation of the activity of EC. Our study identifies how E2/GIGANTEA (GI) and its homologs modulate photoperiod sensitivity through interactions with the EC. During long days, E2 interacts with the blue-light receptor flavin-binding, kelch repeat, F box 1 (FKF1), leading to the degradation of J/ELF3, an EC component. EC also suppresses E2 expression by binding to its promoter. This interplay forms a photoperiod regulatory loop, maintaining sensitivity to photoperiod. Disruption of this loop leads to losing sensitivity, affecting soybean's adaptability and yield. Understanding this loop's dynamics is vital for molecular breeding to reduce soybean's photoperiod sensitivity and develop cultivars with better adaptability and higher yields, potentially leading to the creation of photoperiod-insensitive varieties for broader agricultural applications.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Fotoperíodo , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/fisiologia , Flores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Retroalimentação Fisiológica
20.
Heliyon ; 10(7): e28531, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586380

RESUMO

Improvement of sugarcane is hampered due to its narrow genetic base, and the difficulty in synchronizing flowering further hinders the exploitation of the genetic potential of available germplasm resources. Therefore, the continuous evaluation and optimization of flowering control and induction techniques are vital for sugarcane improvement. In view of this, the review was conducted to investigate the current understanding of photoperiodic and lighting treatment effects on sugarcane flowering and its genetic regulation. Photoperiod facilities have made a significant contribution to flowering control in sugarcane; however, inductive photoperiods are still unknown for some genotypes, and some intended crosses are still impossible to produce because of unresponsive varieties. The effectiveness of lower red/far-red ratios in promoting sugarcane flowering has been widely understood. Furthermore, there is vast potential for utilizing blue, red, and far-red light wavelengths in the flowering control of sugarcane. In this context, light-emitting diodes (LEDs) remain efficient sources of light. Therefore, the combined use of photoperiod regimes with different light wavelengths and optimization of such treatment combinations might help to control and induce flowering in sugarcane parental clones. In sugarcane, FLOWERING LOCUS T (ScFT) orthologues from ScFT1 to ScFT13 have been identified, and interestingly, ScFT3 has evidently been identified as a floral inducer in sugarcane. However, independent assessments of different FT-like gene family members are recommended to comprehensively understand their role in the regulation of flowering. Similarly, we believe this review provides substantial information that is vital for the manipulation of flowering and exploitation of germplasm resources in sugarcane breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...