RESUMO
Microbiologically contaminated water is a significant source of infections in humans and animals, with Pseudomonas aeruginosa (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO42- (sulfate ions), Cl- (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO42-, and Cl- concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.
RESUMO
OBJECTIVES: To analyze the incorporation of cardanol trimethacrylate monomer (CTMA), derived from the cashew nut shell liquid, as a substitute for Bis-GMA in acrylic resins formulations and its effect on experimental resin composites' physicochemical and mechanical properties. MATERIALS AND METHODS: The intermediary cardanol epoxy was synthesized via cardanol epoxidation, followed by the synthesis of CTMA through methacrylic anhydride solvent-free esterification. Experimental resin composites were formulated with an organic matrix composed of Bis-GMA/TEGDMA (50/50 wt %) (control). CTMA was gradually added to replace different proportions of Bis-GMA: 10 wt % (CTMA-10), 20 wt % (CTMA-20), 40 wt % (CTMA-40), and 50 wt % (CTMA-50). The composites were characterized by degree of conversion, water sorption and solubility, viscosity, thermogravimetric analysis, dynamic mechanical analysis, flexural strength and elastic modulus. Data were analyzed with one-way ANOVA and Tukey's post-hoc test (α = 0.05), except for water sorption data, which were analyzed by Kruskall-Wallis and Dunn's method. RESULTS: CTMA-based and control composites did not show statistically significant differences regarding degree of conversion, flexural strength and elastic modulus. CTMA reduced the viscosity and solubility compared to the Bis-GMA-based composite. The CTMA-40 and CTMA-50 exhibited significantly lower water sorption compared to the control. Also, acceptable thermal stability and viscoelastic properties were obtained for safe use in the oral cavity. CONCLUSIONS: Incorporating CTMA into composites resulted in similar chemical and mechanical properties compared to Bis-GMA-based material while reducing viscosity, water sorption and solubility. CLINICAL RELEVANCE: CTMA could be used as a trimethacrylate monomer replacing Bis-GMA in resin composites, thereby minimizing BPA exposure.
Assuntos
Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Resistência à Flexão , Teste de Materiais , Fenóis , Ácidos Polimetacrílicos , Solubilidade , Resinas Compostas/química , Bis-Fenol A-Glicidil Metacrilato/química , Fenóis/química , Viscosidade , Ácidos Polimetacrílicos/química , Módulo de Elasticidade , Metacrilatos/química , Termogravimetria , Polietilenoglicóis/química , Anacardium/químicaRESUMO
Dietary supplementation of fat can be an important source of energy to compensate for the reduction in dry matter intake in dairy cows during heat stress periods. Studies have reported that supplementing dairy cow diets with linseed oil (LO) can increase milk yield and enhance the levels of beneficial fatty acids, such as omega-3 fatty acids, in the milk. The objective of this research was to evaluate the effect of LO supplementation on milk fatty acids profile, milk yield and composition, and physiological parameters of grazing cows. The study was conducted in two seasons, one in spring and one in summer. A 2 × 2 Latin square design was used in each experiment. Twelve Holstein and crossbred Holstein x Jersey cows were involved in each season. Cows were divided into two groups: control (TC) with no supplementation and treatment (TL) supplemented with 400 g/day of LO. The results showed that LO supplementation altered the milk fatty acid profile: decreased concentrations of short and medium-chain fatty acids (C10:0 - C17:1) except for C13:0 and increased concentrations of long-chain fatty acids (C18, C18:1 (both trans and cis isomers), C18:2 (specific conjugated linoleic acid - CLA isomers), and C18:3 n3 (omega-3)). Additionally, milk yield increased by 1.5 l per day during summer in LO-supplemented cows, while milk fat, protein, and casein content decreased. Milk stability increased by 2.2% in the LO-supplemented group. LO-supplemented cows reduced internal body temperature and heart frequency in the afternoon and increased daily rumination time by 20 min. In conclusion, LO supplementation can be an effective strategy to improve the nutritional profile of milk by altering fatty acid composition towards potentially healthier fats, mitigate the negative effects of heat stress on grazing cows during summer, as evidenced by reduced body temperature and heart frequency and increase milk yield.
Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Ácidos Graxos , Lactação , Óleo de Semente do Linho , Leite , Animais , Bovinos/fisiologia , Leite/química , Leite/metabolismo , Feminino , Suplementos Nutricionais/análise , Óleo de Semente do Linho/administração & dosagem , Lactação/efeitos dos fármacos , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ração Animal/análise , Dieta/veterinária , Estações do AnoRESUMO
(1) Background: Cultivating microgreens is emerging as an excellent market opportunity. Their easy, short, and sustainable production methods are the main reasons they are approved by growers. However, a feature that still prevents its further spread is the microbiological risk and their rapid senescence. The present study was conducted to evaluate the post-harvest storage and shelf life of arugula microgreens in different packaging through microbiological, physico-chemical, and sensory parameters; (2) Methods: Plants were stored at 5 °C in open air, vacuum sealed, and under modified atmosphere bags and tested at 0, 3, 5, 7, and 10 days; (3) Results: Microgreens stored in all packaging were safe for consumption within ten days. Regarding physical and chemical parameters, open packaging proved to be promising, with less weight loss and slower chlorophyll degradation. The sensory analysis demonstrated that the microgreens stored in the vacuum-sealed packaging showed a decrease in quality from the fifth day onwards for all attributes. However, the MAP presented good scores with a better visual quality, similar to the fresh microgreens.
RESUMO
The phytochemical components and antioxidant capacity of Açaí (Euterpe oleracea) give it nutritional and bioactive characteristics with anti-cancer and anti-inflammatory properties; it is exported mainly from Brazil to various places worldwide. In Ecuador, the cultivated Euterpe oleracea variety has an abundant production that has not been used or studied in depth; because of this, it is relevant to expand the study of this fruit's phytochemical and antioxidant properties. This paper presents the results of evaluating the concentration of antioxidants and antioxidant activity in different stages of maturation and geographical locations of the Açaí, for which samples obtained in the Ecuadorian provinces of Sucumbíos and Orellana have been evaluated. Antioxidant concentrations were determined with a UV/VIS spectrophotometer at 450-760 nm wavelengths. Antioxidant capacity was determined using the ABTS and FRAP methods. It was evidenced that the values of total polyphenols and total flavonoids decrease with increasing ripening; the opposite effect occurs with total anthocyanins that have a higher concentration in ripe fruits and evidencing an antioxidant capacity that decreases with ripening determined by both methods (FRAP and ABTS).
RESUMO
Characterisation of the water treatment sludge (WTS) generated in drinking water treatment plants (DWTPs) is crucial to define alternatives for its adequate management, including potential reuse options. To define these alternatives, it is necessary to evaluate rainfall seasonality effect on WTS production and its physical and chemical characteristics. This study assessed the production and characterisation of four types of alum-based WTS. The WTS was generated in a pilot-scale system from different raw water turbidities (i.e., low: <5 NTU, medium: 5-10 NTU, high: ≥10 NTU, and very high turbidity: â¼300 NTU) and coagulant doses. To estimate WTS production, mathematical models based on variables such as raw water turbidity, coagulant dosage, and organic matter removed were used. The WTS characterisations included physical (solids and particle size distribution), chemical (metallic oxides, pH, mineral phases), and surface properties (functional groups and zero-charge point pH). The modified Kawamura model presented the best fit (R2 = 1.0, RMSE = 0.1062 and the lower Akaike Information Criterion) for the estimation of WTS production, indicating that at the DWTPs, it is possible to make sludge production projections using only two simple variables: coagulant dose and the raw water turbidity. The four types of WTS consist mainly of amorphous materials (45-65 %), featuring some mineral phases and exhibiting high contents of Al (Al2O3: 30-34 %), Si (SiO2: 21-26 %) and Fe (Fe2O3: 11-13 %). Nevertheless, very high turbidity WTS shows variations in its characteristics, notably a heightened content of clays. As a result of the high concentrations of Al and Fe, the WTS has the potential to be used as coagulants or for the recovery of coagulants, especially low turbidity WTS, which is produced from water with low turbidity and organic matter. The presence of aluminium-silicate clays and the surface functional groups of the silica network suggest that WTS, particularly very high turbidity WTS, also has the potential to be raw materials for generating adsorbents. The potential applications of WTS in coagulation and adsorption can be leveraged in wastewater treatment, promoting the circular economy in the water sector.
RESUMO
Despite the high global production of beetroot (Beta vulgaris L.), its peel is often discarded. Transforming beetroot into flour can reduce waste, improve food security, and decrease environmental pollution. However, large-scale feasibility depends on understanding drying kinetics and optimal storage conditions. This study aimed to investigate the effects of different temperatures in the convective drying of whole beetroot and evaluate the influence of laminated flexible and plastic packaging on flour stability over two months. Drying kinetics were analyzed using five models, with the Page and Logarithm models showing the best fit (R2 > 0.99). Def values (1.27 × 10-9 to 2.04 × 10-9 m2 s-1) increased with rising temperatures while drying time was reduced (from 820 to 400 min), indicating efficient diffusion. The activation energy was 29.34 KJ mol-1, comparable to other plant matrices. Drying reduced moisture and increased ash concentration in the flour. The flour showed a good water adsorption capacity and low cohesiveness, making it marketable. Laminated packaging was more effective in controlling physicochemical parameters, reducing hygroscopicity, and maintaining quality over 60 days. In summary, the Page model can predict beetroot drying kinetics effectively, and laminated packaging can control flour stability.
RESUMO
Three different fermented plant-based beverages were prepared and stored for a long period (50 days) to assess the effect of the quinoa-to-chickpea ratio on physicochemical stability and microbiological quality. Physicochemical stability was evaluated based on pH, acidity, Brix degrees, water-holding capacity (WHC), viscosity, and viscoelasticity. At the end of the long-term storage period, the pH, acidity, and WHC remained stable. During the entire storage period, the beverages maintained good bacterial, fungal, and lactic acid bacteria (LAB) counts. Quinoa and chickpea flour ratios of 50% showed a higher viscosity (18 Pa.s) and WHC (65%) during short-term storage (0-30 d), indicating that the presence of chickpea flour had a positive effect on these parameters, possibly because chickpea starch contains higher amounts of amylose and long-branch chain amylopectin, which impacts the retrogradation pattern under acidic and refrigerated conditions. However, at the end of storage (50 days), the same blend had a higher acidity, lower viscosity (0.78 Pa.s), and lower LAB counts (~1 × 108 CFU/mL), indicating that the increase in chickpea flour had an adverse long-term effect on these parameters. These results suggest that although different ratios of plant sources can improve the physical aspects, they need to be incorporated in a balanced manner to avoid negative effects on both short- and long-term storage, owing to the incorporation of different types of starches and proteins affecting the stability of the system.
RESUMO
In this study, the influence of glycerol and sonicated soybean expeller (SSE) on composite edible films supporting natamycin and nisin was investigated using Response Surface Methodology. Assessments were conducted on mechanical properties, moisture content, water solubility (SW), and color. Optimal results were achieved with 0.46% SSE and 1.4% glycerol, yielding a maximum tensile strength (TS) of 1.0 ± 0.1 MPa and a minimum SW of 19.0 ± 0.3%. SSE had no impact on Tg values (82-89 °C), while antimicrobials reduced Tg (70-73 °C) due to increased water retention. Water vapor permeability was (2.5 ± 0.2) × 10-9 -1 s-1 Pa-1. FTIR analysis revealed strong component interactions. The composite films demonstrated biodegradability in compost after seven days and effective action against Listeria innocua and Saccharomyces cerevisiae. These findings suggest that these materials hold promise as active films for food preservation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01516-6.
RESUMO
BACKGROUND: Acid-base imbalance has been poorly described in patients with coronavirus disease 2019 (COVID-19). Study by the quantitative acid-base approach may be able to account for minor changes in ion distribution that may have been overlooked using traditional acid-base analysis techniques. In a cohort of critically ill COVID-19 patients, we looked for an association between metabolic acidosis surrogates and worse clinical outcomes, such as mortality, renal dialysis, and length of hospital stay. AIM: To describe the acid-base disorders of critically ill COVID-19 patients using Stewart's approach, associating its variables with poor outcomes. METHODS: This study pertained to a retrospective cohort comprised of adult patients who experienced an intensive care unit stay exceeding 4 days and who were diagnosed with severe acute respiratory syndrome coronavirus 2 infection through a positive polymerase chain reaction analysis of a nasal swab and typical pulmonary involvement observed in chest computed tomography scan. Laboratory and clinical data were obtained from electronic records. Categorical variables were compared using Fisher's exact test. Continuous data were presented as median and interquartile range. The Mann-Whitney U test was used for comparisons. RESULTS: In total, 211 patients were analyzed. The mortality rate was 13.7%. Overall, 149 patients (70.6%) presented with alkalosis, 28 patients (13.3%) had acidosis, and the remaining 34 patients (16.2%) had a normal arterial pondus hydrogenii. Of those presenting with acidosis, most had a low apparent strong ion difference (SID) (20 patients, 9.5%). Within the group with alkalosis, 128 patients (61.0%) had respiratory origin. The non-survivors were older, had more comorbidities, and had higher Charlson's and simplified acute physiology score 3. We did not find severe acid-base imbalance in this population. The analyzed Stewart's variables (effective SID, apparent SID, and strong ion gap and the effect of albumin, lactate, phosphorus, and chloride) were not different between the groups. CONCLUSION: Alkalemia is prevalent in COVID-19 patients. Although we did not find an association between acid-base variables and mortality, the use of Stewart's methodology may provide insights into this severe disease.
RESUMO
Modifying starch allows for improvements in its properties to enable improved uses in food matrices, bioplastics, and encapsulating agents. In this research, four varieties of native potato starch were modified by acid treatment, enzymatic treatment, and ethanol precipitation, and their physicochemical, structural, thermal, and techno-functional characteristics were analyzed. According to FT-IR analysis, no influence of the modified starches on the chemical groups was observed, and by scanning electron microscopy (SEM), spherical and oval shapes were observed in the acid and enzymatic treatments, with particle sizes between 27 and 36 µm. In particular, the ethanolic precipitation treatment yielded a different morphology with a particle size between 10.9 and 476.3 nm, resulting in a significant decrease in gelatinization temperature (DSC) and more pronounced crystallites (XRD). On the other hand, the enzymatic treatment showed higher values for z-potential (ζ), and the acid treatment showed lower mass loss (TGA). Acid and ethanolic treatments affected the dough properties compared to native starches. The techno-functional properties showed a decrease in the water absorption index, an increase in the water solubility index, and varied swelling power behaviors. In conclusion, the modification of potato starches through acid, enzymatic, and ethanolic precipitation treatments alters their physicochemical properties, such as swelling capacity, viscosity, and thermal stability. This in turn affects their molecular structure, modifying morphology and the ability to form gels, which expands their applications in the food industry to improve textures, stabilize emulsions, and thicken products. Furthermore, these modifications also open new opportunities for the development of bioplastics by improving the biodegradability and mechanical properties of starch-based plastic materials.
RESUMO
The present study examined different concentrations of the butylated hydroxytoluene (BHT) inhibitor on the kinetics of conversion, polymerization shrinkage stress, and other correlated physicochemical properties of experimental resin composites (ERC). A model composite was formulated with 75 wt% filler containing 0.5 wt% camphorquinone and 1 wt% amine with BHT concentrations of 0.01 wt% (BHT-0.01); 0.1 wt% (BHT-0.1); 0.25 wt% (BHT-0.25); 0.5 wt% (BHT-0.5); 1 wt% (BHT-1), and control (no BHT). They were tested on polymerization shrinkage stress (PSS; n = 5), degree of conversion (DC; n = 3), maximum polymerization rate (RpMAX; n = 5), water sorption (Wsp; n = 0), and solubility (Wsl; n = 10), flexural strength (FS; n = 10), flexural modulus (FM; n = 10), Knoop microhardness (KH; n = 10), and microhardness reduction (HR; n = 10). Data concerning these tests were submitted to one-way ANOVA and Tukey's test (α = 0.05; ß = 0.2). BHT-0.25, BHT-0.5, and BHT-1 showed a gradually significant decrease in PSS (p = 0.037); however, BHT-1 demonstrated a decrease in the physicochemical properties tested. Thus, within the limitations of this study, it was possible to conclude that BHT concentrations between 0.25 and 0.5 wt% are optimal for reducing shrinkage stress without affecting other physicochemical properties of ERCs.
Assuntos
Hidroxitolueno Butilado , Resinas Compostas , Teste de Materiais , Polimerização , Estresse Mecânico , Hidroxitolueno Butilado/química , Resinas Compostas/química , Fenômenos Químicos , Solubilidade , Água/química , DurezaRESUMO
Fluvial sediment analysis and water quality assessment are useful to identify anthropic and natural sources of pollution in rivers. Currently, there is a lack of information about water quality in the Pixquiac basin (Veracruz state, Mexico), and this scarcity of data prevents authorities to take adequate measures to protect water resources. The basin is a crucial territory for Xalapa, the capital city of Veracruz state, as it gets 39% of its drinkable water from it. This research analyzed 10 physicochemical parameters and 12 metal concentrations in various rivers and sources during two seasons. Dissolved metals presented average concentrations (µg/L): Al (456.25) > Fe (199.4) > Mn (16.86) > Ba (13.8) > Zn (7.6) > Cu (1.03) > Pb (0.27) > As (0.12) > Ni (0.118) (Cd, Cr and Hg undetectable). Metals in sediment recorded average concentrations (ppm): Fe (38575) > Al (38425) > Mn (460) > Ba (206.2) > Zn (65.1) > Cr (29.8) > Ni (20.9) > Cu (16.4) > Pb (4.8) > As (2.1) (Cd and Hg undetectable). During the rainy season, Water Quality Index (WAWQI) classified stations P17 and P18's water as "unsuitable for drinking" with values of 110.4 and 117.6. Enrichment factor (EF) recorded a "moderate enrichment" of Pb in sediment in P24. Pollution was mainly explained by wastewater discharges in rivers but also because of erosion and rainfall events. Statistical analysis presented strong relationships between trace and major metals which could explain a common natural origin for metals in water and sediment: rock lixiviation.
Assuntos
Água Potável , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Qualidade da Água , Abastecimento de Água , México , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água Potável/química , Rios/química , Metais Pesados/análise , Metais/análiseRESUMO
INTRODUCTION: The purpose of this study was to evaluate whether the mixing method of AH Plus Jet sealer affects its physicochemical and mechanical properties. METHODS: The properties of AH Plus Jet sealer were analyzed when mixed using either the Auto Mix Tip or manual mixing. The evaluated properties included radiopacity (n = 5), initial and final setting times (n = 5), flow (n = 5), and solubility (n = 3), following specifications outlined in ISO 6876/2012 and ADA Nº 57/2000. pH levels were measured at intervals of 3, 24, 72, and 168 hours (n = 10). The push-out bond strength test was conducted using a universal testing machine and using bovine teeth (n = 30). Failure modes were analyzed with stereomicroscopy. Porosity was evaluated under micro-CT (n = 5), and scanning electron microscopy was also performed (n = 5). One-way analysis of variance and Tukey, unpaired t-tests, or Mann-Whitney tests were used with a significance level of 5%. RESULTS: The Auto Mix exhibited a radiopacity value of 12.11 mmAl, whereas manual mixing resulted in 12.55 mmAl (P > .05). For initial and final setting times, Auto Mix showed 901 minutes and 1779 minutes, respectively, while manual mixing recorded values of 631 minutes and 1504 minutes (P < .05). In terms of flow, Auto Mix demonstrated higher values (25.26 mm) than manual mixing (21.71 mm) (P < .05). No statistical differences were observed between the two methods for solubility and pH (P > .05). Manual mixing presented a higher bond strength value (14.52 MPa) than Auto Mix (9.81 MPa) (P < .05). The mixed failure mode was the most frequent outcome for both methods. The highest porosity was observed for Auto Mix (P < .05). Scanning electron microscopy analysis revealed that manual mixing resulted in a smoother surface with fewer pores and smaller, more evenly distributed agglomerates compared to automatic mixing. CONCLUSION: The mixing method employed for AH Plus Jet sealer influences some physicochemical and mechanical properties of the material.
Assuntos
Resinas Epóxi , Teste de Materiais , Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/química , Bovinos , Animais , Resinas Epóxi/química , Microscopia Eletrônica de Varredura , Solubilidade , Concentração de Íons de HidrogênioRESUMO
Meat products are known for their lipid profile rich in saturated fats and cholesterol, and also for the formation of oxidation compounds; therefore, a reduction in animal fat may result in a product less harmful to health. Pijuayo is an Amazon fruit known for its nutritional properties, such as its fiber and lipid content. For these reasons, it is an attractive fruit to replace animal fat in meat products. The present work used pijuayo pulp and peel flours to partially replace animal fat in beef-based burgers at 25% and 50% levels, considering sensory and physicochemical outcomes evaluated by Principal Component Analysis (PCA), Correspondence Analysis (CA) and Multiple Factor Analysis (MFA). Pijuayo flour affected the physicochemical characteristics evaluated by PCA, where the samples with greater fat replacement were characterized by a high carbohydrate content and instrumental yellowness. The minimal fat replacement did not abruptly affect the PCA's instrumental texture and color, proximal composition, yield properties, and lipid oxidation. The overall liking was greater in the 25% fat reduction treatments, even greater than the control, in which positive sensory attributes for liking were highlighted for those treatments. A small segment of consumers (11% of total consumers) preferred the treatment with greater replacement of fat with pijuayo peel flour, which these consumers tended to characterize as seasoned. However, this treatment had the lowest liking. The MFA showed that the sensory characteristics tender and tasty were strongly correlated with overall liking and were highlighted in the samples of 25% fat reduction, suggesting that the pijuayo improves the tenderness and flavor of reduced-fat burgers. Other inclusion levels between 25% and 50% of fat replacement could be explored, and optimization studies are needed. In addition, the sensory characteristics and flavor-enhancing compounds of the fruit, as well as the nutritional aspects of the inclusion of pijuayo, should be studied, such as the fatty acid profile. These characteristics will be informative to explore pijuayo as a fat replacer at a pilot scale and industrial scale.
RESUMO
The impact of high-intensity ultrasound (HIU, 20 kHz) on the physicochemical and functional characteristics of gourd seed protein isolate (GoSPI) was studied. GoSPI was prepared from oil-free gourd seed flour through alkaline extraction (pH 11) and subsequent isoelectric precipitation (pH 4). The crude protein concentration of GoSPI ranged from 91.56 ± 0.17 % to 95.43 ± 0.18 %. Aqueous suspensions of GoSPI (1:3.5 w/v) were ultrasonicated at powers of 200, 400, and 600 W for 15 and 30 min. Glutelins (76.18 ± 0.15 %) were the major protein fraction in GoSPI. HIU decreased the moisture, ash, ether extract, and nitrogen-free extract contents and the hue angle, available water and a* and b* color parameters of the GoSPI in some treatments. The L* color parameter increased (7.70 %) after ultrasonication. HIU reduced the bulk density (52.63 %) and particle diameter (39.45 %), as confirmed by scanning electron microscopy, indicating that ultrasonication dissociated macromolecular aggregates in GoSPI. These structural changes enhanced the oil retention capacity and foam stability by up to 62.60 and 6.84 %, respectively, while the increases in the solvability, water retention capacity, and emulsifying activity index of GoSPI were 90.10, 19.80, and 43.34 %, respectively. The gelation, foaming capacity, and stability index of the emulsion showed no improvement due to HIU. HIU altered the secondary structure of GoSPI by decreasing the content of α-helices (49.66 %) and increasing the content of ß-sheets (52.00 %) and ß-turns (65.00 %). The electrophoretic profile of the GoSPI was not changed by HIU. The ultrasonicated GoSPI had greater functional attributes than those of the control GoSPI and could therefore be used as a functional food component.
RESUMO
This study assessed water relaxometry of beef exposed to different ageing techniques by examining the inner and surface regions using time-domain nuclear magnetic resonance (TD-NMR) relaxometry. Beef strip loins were aged under vacuum (Wet), under vacuum using moisture absorbers (Abs), under vacuum using moisture absorbers and with mechanical tenderisation (AbsTend), or without any packaging (Dry). The ageing technique significantly influenced various meat parameters, including dehydration, total loss, and the moisture content of the meat surface. The transverse (T2) relaxation times provided a more sensitive indicator of the changes in meat water relaxometry than the longitudinal (T1) relaxation times. The Dry samples exhibited distinct differences in the T2 signals between the surface and inner regions of the meat. In particular, for the inner region, there were significant differences in signal areas between the Wet and Dry samples, and the Abs and AbsTend samples were positioned closely together between the Dry and Wet samples. The principal component analysis supported these findings: it indicated some differentiation among the ageing techniques in the score plot, but the differentiation was more pronounced when analysing the surface region. Additionally, there was a strong correlation between dehydration and the T2 values, leading to a clustering of the samples based on the ageing technique. The overlap between the Abs and AbsTend samples, situated between the Dry and Wet samples, suggests the potential of these treatments to produce meat with properties that are intermediate to Wet and Dry meat. Furthermore, tenderisation did not lead to greater dehydration.
Assuntos
Manipulação de Alimentos , Espectroscopia de Ressonância Magnética , Água , Água/química , Animais , Bovinos , Espectroscopia de Ressonância Magnética/métodos , Manipulação de Alimentos/métodos , Vácuo , Carne Vermelha/análise , Fatores de Tempo , Carne/análise , Análise de Componente PrincipalRESUMO
Sessile organisms, such as plants, developed various ways to sense and respond to external and internal stimuli to maximize their fitness through evolutionary time. Transcripts and protein regulation are, among many, the main mechanisms that plants use to respond to environmental changes. SKIP protein is one such, presenting an SNKW interacting domain, which is highly conserved among eukaryotes, where SKI interacting protein acts in regulating key processes. In the present work, many bioinformatics tools, such as phylogenetic relationships, gene structure, physical-chemical properties, conserved motifs, prediction of regulatory cis-elements, chromosomal localization, and protein-protein interaction network, were used to better understand the genome-wide SNW/SKIP domain-containing proteins. In total, 28 proteins containing the SNW/SKIP domain were identified in different plant species, including plants of agronomic interest. Two main protein clusters were formed in phylogenetic analysis, and gene structure analysis revealed that, in general, the coding region had no introns. Also, expression of these genes is possibly induced by abiotic stress stimuli. Primary structure analysis of the proteins revealed the existence of an evolutionarily conserved functional unit. But physicochemical properties show that proteins containing the SNW/SKIP domain are commonly unstable under in vivo conditions. In addition, the protein network, demonstrated that SKIP homologues could act by modulating plant fitness through gene expression regulation at the transcriptional and post-transcriptional levels. This could be corroborated by the expression number of gene copies of SKIP proteins in many species, highlighting it's crucial role in plant development and tolerance through the course of evolution.
Assuntos
Genoma de Planta , Filogenia , Proteínas de Plantas , Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Domínios Proteicos , Regulação da Expressão Gênica de PlantasRESUMO
The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.
Assuntos
Digestão , Germinação , Lupinus , Amido , Difração de Raios X , Zea mays , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Lupinus/química , Lupinus/metabolismo , Lupinus/crescimento & desenvolvimento , Amido/química , Amido/metabolismo , Farinha/análise , Viscosidade , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Manipulação de AlimentosRESUMO
RESUMEN Perú generó 8.215.355 t de residuos sólidos municipales en el 2021; de este, 57,64 % corresponde a residuos orgánicos (RO) y 61,28 % son dispuestos en rellenos sanitarios con múltiples deficiencias de gestión, lo que exige buscar alternativas para tratar de manera segura los RO. Frente a esta situación, el compostaje permite la biotransformación, la reducción y la obtención de biofertilizantes, que se pueden aplicar como sustrato o enmienda. El objetivo de la investigación fue evaluar indicadores de procesamiento y calidad de compost derivado de residuos sólidos orgánicos urbanos, en Leoncio Prado, región Huánuco, Perú. Se evaluaron los tipos de residuos, basados en la normativa peruana para caracterización de residuos, los indicadores del proceso (temperatura y pH), la caracterización fisicoquímica y calidad en base a las normas internacionales. Los resultados muestran diferencia significativa para pH, nitrógeno, calcio, potasio, cobre y zinc; contrariamente, la materia orgánica, el % de cenizas, la conductividad eléctrica, el sodio y el fósforo no mostraron diferencias, siendo lo más destacado los altos niveles de pH, además, la calidad del compost es de "Clase B", según la norma chilena 2880. Los compost producidos son de calidad media y se recomienda su uso como sustrato o enmienda en la agricultura, previo tratamiento para corregir los altos niveles de pH.
ABSTRACT Peru generated 8,215,355 t of municipal solid waste in 2021, of which 57.64% corresponds to organic waste (OW) and 61.28% is disposed of in landfills with multiple management deficiencies, which makes it necessary to seek alternatives to safely treat OW. In view of this situation, composting allows biotransformation, reduction and obtaining biofertilizers that can be applied as a substrate or amendment. The objective of the research was to evaluate the processing indicators and quality of compost derived from urban organic solid waste in Leoncio Prado, Huánuco-Peru. Waste types were evaluated based on Peruvian regulations for waste characterization, process indicators (temperature and pH), physicochemical characterization and quality based on international standards. The results show significant differences for pH, nitrogen, calcium, potassium, copper and zinc; on the contrary, organic matter, % ash, electrical conductivity, sodium and phosphorus showed no differences, the most outstanding being the high pH levels, and the quality of the compost is "Class B" according to Chilean standard 2880. The compost produced is of medium quality and is recommended for use as a substrate or amendment in agriculture after treatment to correct the high pH levels.