Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(9): 5204-5213, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699838

RESUMO

To investigate the effects of nano-copper oxide (CuO NPs) on plant growth, physio-biochemical characteristics, and heavy metal content under cadmium stress, a hydroponics experiment was conducted on the effects of single and combined treatments of CuO NPs (0, 10, 20, and 50 mg·L-1) and Cd (0, 1, and 5 µmol·L-1) on the fresh weight, photosynthetic pigment content, MDA content, antioxidant enzyme activity (CAT, POD, SOD, and GR), and Cu and Cd contents in Brassica chinensis L. The results showed that under the single addition of CuO NPs, the fresh weight and activities of CAT, POD, and GR were inhibited as a whole. Photosynthetic pigment content and SOD activity increased first and then decreased with the increase in CuO NPs concentration, whereas MDA content in leaves and roots, and Cu content in subcells of B. chinensis L. increased with the increasing of CuO NPs. As compared with that in the control, CuO NPs promoted the growth of B. chinensis L., and the fresh weight increased by 8.70%-44.87% at 1 µmol·L-1 Cd. When the content of Cd was up to 5 µmol·L-1, a low content (10 mg·L-1) of CuO NPs promoted the growth of B. chinensis L., whereas a high concentration (50 mg·L-1) showed an inhibitory effect. The addition of CuO NPs could increase photosynthetic pigment and MDA contents under different Cd stress, and MDA content in leaves and roots of B. chinensis L. increased by 4.34%-36.27% and 13.43%-131.04%, respectively, than that in the control groups. Under the same concentration of 1 µmol·L-1 Cd, the addition of CuO NPs decreased the activities of CAT and GR, whereas the activity of POD increased. When the content of Cd was up to 5 µmol·L-1, CuO NPs increased the POD activity and inhibited the activity of SOD and GR. The activities of CAT and CAT in the leaves of B. chinensis L. initially showed an increasing and then decreasing trend. CuO NPs and Cd showed antagonistic effects, the maximum reduction of Cd content in leaves and roots of Brassica chinensis L. under 1 µmol·L-1 Cd treatment was 45.64% and 33.39%, and that under 5 µmol·L-1 Cd treatment was 18.25% and 25.35%, respectively. The content of Cu and Cd in subcellular organs of the plants decreased, but the proportion of soluble components increased. These results indicated that CuO NPs at low concentrations promoted plant growth under Cd stress and further inhibited the absorption of Cd but increased the oxidative damage to B. chinensis L.


Assuntos
Brassica , Metais Pesados , Cobre , Cádmio/toxicidade , Metais Pesados/toxicidade , Antioxidantes , Óxidos , Superóxido Dismutase
2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-940774

RESUMO

ObjectiveTo study the effect of organophosphate-solubilizing bacteria and compound bacteria on the photosynthesis and physiological and biochemical characteristics of leaves of Paris polyphylla var. yunnanensis, and to provide a reference for selecting suitable bacterial fertilizers in artificial cultivation of this medicinal species. MethodPot experiment was carried out indoor and the following groups were designed: control (CK), inoculation with Bacillus mycoides (S1), inoculation with B. wiedmannii (S2), inoculation with B. proteolyticus (S3), inoculation with B. mycoides and B. wiedmannii (S4), inoculation with B. mycoides and B. proteolyticus (S5), inoculation with B. wiedmannii and B. proteolyticus (S6), and inoculation with B. mycoides, B. wiedmannii and B. proteolyticus (S7). Then, the growth and development, photosynthesis, and various physiological and biochemical indexes of the leaves of this species were observed. ResultCompared with CK, the treatment groups showed decrease in content of malondialdehyde in the leaves (P<0.05), particularly S7 (content was only about 1/3 that of the CK). The leaf area, photosynthetic parameters, photosynthetic pigment content, soluble sugar content, soluble protein content, and activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves of the treatment groups were all improved. Among them, the leaf area, soluble sugar content, and soluble protein content were the highest in S7, which were 2.8, 2.1, and 2.2 times that of the CK, respectively. SOD activity peaked in S6 (2.9 times higher than that in the CK) and the highest activity of POD and CAT was detected in S5 (1.5 times and 2.1 times, respectively higher than that in the CK). ConclusionInoculation with different organophosphate-solubilizing bacteria or compound bacteria can promote the growth and development of P. polyphylla var. yunnanensis and improve its resistance to stresses. The combination of B. mycoides and B. proteolyticus and the combination of the three achieved the have the best effect. This study provides a reference for the selection of bacterial fertilizers for artificial cultivation of P. polyphylla var. yunnanensis.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-466752

RESUMO

Taurine is one of the extremely important amino acids in the body,and is also the most abundant free amino acids in the central nervous system(CNS).Taurine as a conditional essential amino acids exerts a wide range of physiological and pharmacological effects.Taurine,especially as a neurotransmitter in the developing CNS,can maintain the structural integrity of the membrane,regulate calcium transport and calcium homeostasis,also as nutritional factors,osmolyte,neuromodulator,neuroprotective agents,plays an important role.In this paper,physiological and biochemical properties of taurine,source and distribution in vivo,synthesis and metabolism,absorption and transport,and its protective effect on the CNS are reviewed.

4.
Microbiology ; (12)1992.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-683847

RESUMO

The enzyme activity of ?- Acetolactate Decaroboxylases (ALDC) from different microbes was studied, the results demonstrated that it was quite different among them. There were diversities of their enzyme reaction velocities. It was clear that the enzyme activity was affected by the pH of the enzyme reaction system, for example, the optimum pH of ALDC from Lactococcus lactis was 6. 6, while for Aerobacter Aerogenes it was 5. 8. Addition leucine,valine and isoleucine into enzyme reaction system obviously affected the enzyme activity of ALDC from different microbes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...