Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.212
Filtrar
1.
Int J Phytoremediation ; : 1-13, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949066

RESUMO

Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 µg g-1, and 31.52, 60.78, 51.89, and 25.33 µg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.


This study focused on an underexplored topic, the potential of natural amino acids (NAA) and plant growth-promoting rhizobacteria (PGPRs) to enhance phytoremediation efficiency of quinoa in a multi-metal contaminated soil with the waste recycling approach. Despite their chelating abilities, NAA have been rarely studied in this context. In the present study, the effects of extracted NAA, acting as environmentally friendly chelating agents, and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were examined on the responses of quinoa in a soil contaminated with Pb, Ni, Cd, and Zn.

2.
Chemosphere ; 362: 142786, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977251

RESUMO

Floating treatment wetlands (FTWs) are artificial platforms that allow aquatic emergent plants to grow in water. Aquatic macrophytes and microorganisms attached to plant roots contribute to the remediation of the contaminated water through physicochemical and biological processes. The pollutant removal treatment performance is affected by various factors, including the plant species. In this study, several plant species, i.e. Canna generalis, Phragmites australis, Pennisetum purpureum, Cyperus alternifolius rottb, Kyllinga brevifolia rottb, and Cyperus ordoratus were investigated for their potential to clean-up water from the Hang Bang canal in Ho Chi Minh City (Vietnam). Canna generalis, Phragmites australis, and Cyperus alternifolius were found to be suitable for FTWs with the highest performance compared to that of other plant species investigated. The organic and nitrogen removal rates amounted to 48-70 g COD m-3 d-1 and 0.7-1.2 g N m-3 d-1, respectively, whereas the reduction of pathogens was around 1.86-3.00 log. Furthermore, FTW systems bring other benefits such as improving ecosystem functioning and biodiversity, producing value-added products from plant biomass, as well as attracting the attention of communities, thus increasing social acceptance of environmental technology interventions.

3.
J Environ Manage ; 366: 121751, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972191

RESUMO

Pyrolysis stands out as an effective method for the disposal of phytoremediation residues in abandoned mines, yielding a valuable by-product, biochar. However, the environmental application of biochar derived from such residues is limited by the potential environmental risks of heavy metals. Herein, Miscanthus sp. residues from abandoned mines were pyrolyzed into biochars at varied pyrolysis temperatures (300-700 °C) to facilitate the safe reuse of phytoremediation residues. The results showed that pyrolysis significantly stabilizes heavy metals in biomass, with Cd exhibiting the most notable stabilization effect. Acid-soluble/exchangeable and reducible fractions of Cd decreased significantly from 69.91 % to 2.52 %, and oxidizable and residue fractions increased approximately 3.24 times at 700 °C. The environmental risk assessment indicated that biochar pyrolyzed over 500 °C pose lower environmental risk (RI < 30), making them optimal for the safe utilization of phytoremediation residues. Additionally, adsorption experiments suggested that biochars prepared at higher temperature (500-700 °C) exhibit superior adsorption capacity, attributed to alkalinity and precipitation effect. This study highlights that biochars produced by pyrolyzing Miscanthus sp. from abandoned mines above 500 °C hold promise for environmental remediation, offering novel insight into the reutilization of metal-rich biomass.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38972947

RESUMO

2,4-Dinitrophenol (2,4-DNP) is recognized as an emerging contaminant due to its high toxicity and poor biodegradability, posing a threat to animals, plants, and human health. The efficient removal of 2,4-DNP remains a challenging issue in phytoremediation research, particularly because of its toxic effects on plants. To address this, a hydroponic simulation experiment was conducted to investigate the impact of adding exogenous methyl jasmonate (MeJA) on the tolerance and purification capabilities of Salix matsudana Koidz (S. matsudana) seedlings exposed to 2,4-DNP. The results indicated that the addition of exogenous MeJA mitigated the damage caused by 2,4-DNP to S. matsudana seedlings by enhancing the activity of antioxidant enzymes, reducing excess reactive oxygen species (ROS), lowering membrane lipid peroxidation, and minimizing membrane damage. Notably, the most effective alleviation was observed with the addition of 50 mg·L-1 MeJA. Furthermore, exogenous MeJA helped maintain the biomass indices of S. matsudana seedlings under 2,4-DNP stress and increased the removal efficiency of 2,4-DNP by these seedlings. Specifically, the addition of 50 mg·L-1 MeJA resulted in a removal percentage of 79.57%, which was 11.88% higher than that achieved with 2,4-DNP treatment. In conclusion, exogenous MeJA can improve the plant resistance and enhance 2,4-DNP phytoremediation.

5.
Int J Phytoremediation ; : 1-10, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973396

RESUMO

Vesicular sequestration is a potential strategy for enhancing plant tolerance to cadmium (Cd) and arsenic (As). In this study, the ectopic overexpression of yeast-derived ScSMF2 in Arabidopsis thaliana was found to enhance the accumulation and tolerance of Cd and As in transgenic plants. ScSMF2 was localized on vacuole membranes and formed puncta structures in plant cells when agro-infiltrated for transient expression. Transgenic Arabidopsis showed less retardation on root elongation and shoot weight and more accumulation of Cd, As (III) and As (V) when cultured on medium containing Cd or As. Overexpression of ScSMF2 promoted accumulation of Cd and arsenic in transgenic Arabidopsis, which were over twice higher than in WT plants when cultured in soil. This study provides insights into the mechanisms involved in the vesicular sequestration of heavy metals in plant and presents a potential strategy for enhancing the phytoremediation capacity of plants toward heavy metals.


Ectopic overexpression of the yeast Mn2+ transporter SMF2 in Arabidopsis thaliana substantially boosts the accumulation and tolerance to Cd and As in plants. This augmentation is attributed to the enhanced efficacy of intracellular vesicle sequestration, thereby bolstering the capacity of plants to sequester and detoxify these toxic heavy metals. This investigation introduces a potential approach for cultivating plants with improved phytoremediation capabilities, thereby advancing eco-friendly and sustainable remediation initiatives against heavy metal pollution.

6.
Int J Phytoremediation ; : 1-19, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975678

RESUMO

This article seeks to evaluate the scientific landscape of the phytoremediation of mine tailings through a series of bibliometric and scientometric techniques. Phytoremediation has emerged as a sustainable approach to remediate metal-contaminated mine waste areas. A scientometric analysis of 913 publications indexed in Web of Science from 1999 to 2023 was conducted using CiteSpace. The results reveal an expanding, interdisciplinary field with environmental sciences as the core category. Keyword analysis of 561 nodes and 2,825 links shows a focus on plant-metal interactions, microbial partnerships, bioavailability, and field validation. Co-citation analysis of 1,032 nodes and 2,944 links identifies seminal works on native species, plant-microbe interactions, and amendments. Temporal mapping of 15 co-citation clusters indicates a progression from early risk assessments and native plant inquiries to integrated biological systems, economic feasibility, and sustainability considerations. Recent trends emphasize multidimensional factors influencing adoption, such as plant-soil-microbe interactions, organic amendments, and field-scale performance evaluation. The findings demonstrate an intensifying translation of phytoremediation from scientific novelty to engineering practice. This quantitative and qualitative analysis of research trends aids in understanding the development of phytoremediation for mine tailings. The results provide valuable insights for researchers and practitioners in this evolving field.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38985418

RESUMO

Mining is a major economic activity in many developing countries. However, it disturbs the environment, producing enormous quantities of waste, known as mine tailings, which can have deleterious environmental impact, due to their high heavy metals (HM) content. Often, foundation species that establish on mine tailings are good candidates to study the effects of HM bioaccumulation at different levels of biological organization. Prosopis laevigata is considered a HM hyperaccumulator which presents attributes of a foundation species (FS) and establishes naturally on mine tailings. We evaluated the bioaccumulation of Cu, Pb, and Zn in P. laevigata foliar tissue, the leaf micro- and macro-morphological characters, DNA damage, and population genetic effects. In total, 80 P. laevigata individuals (20/site) belonging to four populations: The individuals from both sites (exposed and reference) bioaccumulated HMs (Pb > Cu > Zn). However, in the exposed individuals, Pb and Cu bioaccumulation was significantly higher. Also, a significant effect of macro- and micro-morphological characters was registered, showing significantly lower values in individuals from the exposed sites. In addition, we found significant differences in genotoxic damage in P. laevigata individuals, between the exposed and reference sites. In contrast, for the micro-morphological characters, none of the analyzed metals had any influence. P. laevigata did not show significant differences in the genetic structure and diversity between exposed and reference populations. However, four haplotypes and four private alleles were found in the exposed populations. Since P. laevigata is a species that establishes naturally in polluted sites and bioaccumulates HM in its foliar tissues, the resulting genetic, individual and population effects have not been severe enough to show detrimental effects; hence, P. laevigata can be a useful tool in phytoremediation strategies for soils polluted with Pb and Cu, maintaining its important ecological functions.

8.
J Hazard Mater ; 476: 135135, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38986409

RESUMO

Rhizosphere bacteria are critical for supporting plant performance in stressful environments. Understanding the assembly and co-occurrence of rhizosphere bacterial communities contributes significantly to both plant growth and heavy metal accumulation. In this study, Ligustrum lucidum and Melia azedarach were planted in soils with simulated varying levels of Pb-Zn contamination. The Rhizosphere bacterial communities were investigated by using 16S rRNA gene sequencing. The impacts of Pb-Zn contamination on the diversity and structure of the rhizosphere bacterial community were found to be greater than those of both tree species. The variation in bacterial community structure in both trees was mainly driven by the combinations of Pb-Zn and soil properties. Deterministic processes (non-planted, 82 %; L. lucidum, 73 %; M. azedarach, 55 %) proved to be the most important assembly processes for soil bacterial communities, but both trees increased the importance of stochastic processes (18 %, 27 %, 45 %). The rhizosphere co-occurrence networks exhibited greater stability compared to the non-planted soil networks. Rare taxa played a dominant role in maintaining the stability of rhizosphere networks, as most of the keystone taxa within rhizosphere networks belonged to rare taxa. Dissimilarities in the structure and network complexity of rhizosphere bacterial communities were significantly associated with differences in tree biomass and metal accumulation. These variations in response varied between both trees, with L. lucidum exhibiting greater potential for phytoremediation in its rhizosphere compared to M. azedarach. Our results offer valuable insights for designing effective microbe-assisted phytoremediation systems.

9.
Sci Rep ; 14(1): 15898, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987638

RESUMO

Research was carried out on the removal of a group of six contaminants of emerging concern: bisphenol A, N,N-diethyl-m-toluamide, diethylstilbestrol, triclosan, estrone and estradiol from the water matrix during contact with small floating macrophytes Wolffia arrhiza and Lemna minor. The optimal conditions for the process, such as pH, light exposure per day, and plant mass, were determined using the design of experiments chemometric approach based on central composite design. Experiments conducted under the designated optimal conditions showed that after 7 days, the removal efficiency equals 88-98% in the case of W. arrhiza and 87-97% in the case of L. minor, while after 14 days of the experiment, these values are 93-99.6% and 89-98%, respectively. The primary mechanism responsible for removing CECs is the plant uptake, with the mean uptake rate constant equal to 0.299 day-1 and 0.277 day-1 for W. arrhiza and L. minor, respectively. Experiments conducted using municipal wastewater as a sample matrix showed that the treatment efficiency remains high (the average values 84% and 75%; in the case of raw wastewater, 93% and 89%, and in the case of treated wastewater, for W. arrhiza and L. minor, respectively). Landfill leachate significantly reduces plants' ability to remove pollutants (the average removal efficiency equals 59% and 56%, for W. arrhiza and L. minor, respectively).


Assuntos
Araceae , Poluentes Químicos da Água , Araceae/metabolismo , Araceae/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Águas Residuárias/química , Purificação da Água/métodos
10.
BMC Plant Biol ; 24(1): 659, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987675

RESUMO

BACKGROUND: The potential of phytoremediation using garlic monoculture (MC) and intercropping (IC) system with perennial ryegrass to enhance the uptake of cadmium (Cd), chromium (Cr), and lead (Pb) were investigated. RESULTS: Positive correlations were found between MC and IC systems, with varying biomass. Production of perennial ryegrass was affected differently depending on the type of toxic metal present in the soil. Root growth inhibition was more affected than shoot growth inhibition. The total biomass of shoot and root in IC was higher than MC, increasing approximately 3.7 and 2.9 fold compared to MC, attributed to advantages in root IC crop systems. Photosystem II efficiency showed less sensitivity to metal toxicity compared to the control, with a decrease between 10.07-12.03%. Among gas exchange parameters, only Cr significantly affected physiological responses by reducing transpiration by 69.24%, likely due to leaf chlorosis and necrosis. CONCLUSION: This study exhibited the potential of garlic MC and IC with perennial ryegrass in phytoremediation. Although the different metals affect plant growth differently, IC showed advantages over MC in term biomass production.


Assuntos
Biodegradação Ambiental , Alho , Lolium , Metais Pesados , Fotossíntese , Lolium/crescimento & desenvolvimento , Lolium/efeitos dos fármacos , Lolium/fisiologia , Lolium/metabolismo , Fotossíntese/efeitos dos fármacos , Metais Pesados/toxicidade , Alho/crescimento & desenvolvimento , Alho/fisiologia , Alho/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biomassa , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cádmio/toxicidade , Cádmio/metabolismo
11.
Sci Total Environ ; 947: 174579, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981535

RESUMO

The current status of environmental pollution by heavy metals (HMs) will affect the entire ecosystem components. The results obtained so far indicate that some plants can be effective in removing toxic metals from the soil. For this purpose, the phytoremediation ability of three fleshy ornamental plants; cactus (Opuntia humifusa), kalanchoe (Kalanchoe blossfeldiana) and bryophyllum (Bryophyllum delagoensis), was evaluated under the stress of HMs. These succulents are known for their remarkable adaptive capabilities, allowing them to thrive in harsh environmental conditions, including those with high levels of contaminants. Their robust nature, efficient water-use strategies, and proven potential for heavy metal accumulation made them viable candidates for investigating their phytoremediation potential. This experiment was performed as factorial based on completely randomized block design with two factors; the first factor included the type of plant in 3 levels (cactus, kalanchoe and bryophyllum) and the second one included the type of metal in 5 levels (control, silver, cadmium, lead and nickel) in 3 repetitions. The concentration of each salt used was 100 ppm. The measured parameters included stem height, relative growth, diameter, dry matter percentage of root and shoot, chlorophyll a, b and total chlorophyll, carotenoid, anthocyanin, proline, and elements of nickel, silver, lead and cadmium, as well biological concentration factor. The results showed that the highest amount of final stem height, relative growth, dry matter percentage of shoot and the highest amount of chlorophyll a and b, carotenoid and anthocyanin were obtained in bryophyllum. Also, the results of mean comparison of the data related to the effect of metal type on the plants showed that the highest amount of carotenoid, anthocyanin and biological concentration factor were induced by cadmium. On the other hand, the highest and lowest amount of proline as well anthocyanin and proline were induced by silver and lead, respectively. Totally, bryophyllum had a high resistance to HMs and the examined HMs had less effect on the growth of this plant. Cactus, among trial species, exhibited superior potential for HM absorption compared to kalanchoe and bryophyllum. The study underscores cactus as an excellent phytoremediator.

12.
Int J Phytoremediation ; : 1-14, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967334

RESUMO

While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. P. crassipes was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH4-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH4+-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.


The research succeeded in treating greywater by phytoremediation followed by recycling the exhausted P. crassipes plant to prepare an adsorbent material used in the post-treatment phase, giving an economically feasible scenario with 6.5-year payback period.

13.
Environ Monit Assess ; 196(8): 703, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967833

RESUMO

Industrial effluents pose a serious environmental problem, because they contain toxic contaminants mainly heavy metals that are the most dangerous to humans, animals, plants, and the environment in general. Phytoremediation using macrophytes is an adopted technique for the environment decontamination due to its efficiency and cost-effectiveness. The present study aims to highlight the capabilities of macrophytes to remove heavy metals from wastewater of Biskra region (Algeria). The methodology consists of filling out the filters planted with Arundo donax and Phragmites australis with raw industrial wastewater, then recovering decontaminated water after 15 days to assess removal of lead, copper, zinc, and iron. Both plants had shown a good efficiency for the removal of metals loaded in wastewater eliminating about 94 to 98% of initial concentration. In addition, calculated bioaccumulation factor (BAF) had confirmed the accumulation of heavy metals in different parts of experimental plants; recorded values of BAF > 1 allowed the consideration of Arundo donax and Phragmites australis as good hyper-accumulator plants. Obtained results confirm the efficiency of phytoremediation technology using macrophytes for the wastewater treatment in particular and the environment decontamination in general.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poaceae , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Metais Pesados/análise , Metais Pesados/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Argélia , Resíduos Industriais
14.
Plant Physiol Biochem ; 213: 108795, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878390

RESUMO

Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.


Assuntos
Microplásticos , Plantas , Microplásticos/toxicidade , Plantas/metabolismo , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Nanopartículas/toxicidade , Recuperação e Remediação Ambiental/métodos , Plásticos/metabolismo , Plásticos/toxicidade , Poluição Ambiental
15.
Environ Sci Pollut Res Int ; 31(29): 42185-42201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862799

RESUMO

Nano-phytoremediation is a novel green technique to remove toxic pollutants from the environment. In vitro regenerated Ceratophyllum demersum (L.) plants were exposed to different concentrations of chromium (Cr) and exposure times in the presence of titania nanoparticles (TiO2NPs). Response surface methodology was used for multiple statistical analyses like regression analysis and optimizing plots. The supplementation of NPs significantly impacted Cr in water and Cr removal (%), whereas NP × exposure time (T) statistically regulated all output parameters. The Firefly metaheuristic algorithm and the random forest (Firefly-RF) machine learning algorithms were coalesced to optimize hyperparameters, aiming to achieve the highest level of accuracy in predicted models. The R2 scores were recorded as 0.956 for Cr in water, 0.987 for Cr in the plant, 0.992 for bioconcentration factor (BCF), and 0.957 for Cr removal through the Firefly-RF model. The findings illustrated superior prediction performance from the random forest models when compared to the response surface methodology. The conclusion is drawn that metal-based nanoparticles (NPs) can effectively be utilized for nano-phytoremediation of heavy metals. This study has uncovered a promising outlook for the utilization of nanoparticles in nano-phytoremediation. This study is expected to pave the way for future research on the topic, facilitating further exploration of various nanoparticles and a thorough evaluation of their potential in aquatic ecosystems.


Assuntos
Algoritmos , Biodegradação Ambiental , Cromo , Poluentes Químicos da Água , Nanopartículas , Algoritmo Florestas Aleatórias
16.
Environ Sci Pollut Res Int ; 31(30): 42495-42520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872037

RESUMO

Plants have numerous strategies for phytoremediation depending upon the characteristic of pollutants. Plant growth promoting rhizobacteria (PGPR) are essential to the process of phytoremediation and play a key part in it. The mechanism of PGPR for phytoremediation is mediated by two methods; under the direct method there is phytohormone production, nitrogen fixation, nutrient mineral solubilization, and siderophore production while the indirect method includes quorum quenching, antibiosis, production of lytic enzyme, biofilm formation, and hydrogen cyanide production. Due to their economic and environmental viability, most researchers have recently concentrated on the potential of weed plants for phytoremediation. Although weed plants are considered unwanted and noxious, they have a high growth rate and adaptability which opens a high scope for its role in phytoremediation of contaminated site. The interaction of plant with rhizobacteria starts from root exudates containing various organic acids and peptides which act as nutrients essential for colonization and siderophore production by the rhizospheric bacteria. The rhizobacteria, while colonizing, tend to promote plant growth and health either directly by providing phytohormones and minerals or indirectly by suppressing growth of possible phytopathogens. Recently, several weed plants have been reported for phytoextraction of heavy metals (Ni, Pb, Zn, Hg, Cd, Cu, As, Fe, and Cr) contaminants from various agro-based industries. These potential native weed plants have high prospect of eco-restoration of polluted site with complex organo-metallic waste for sustainable development.


Assuntos
Biodegradação Ambiental , Resíduos Industriais , Plantas Daninhas , Poluentes do Solo/metabolismo , Desenvolvimento Vegetal , Metais Pesados/metabolismo
17.
Environ Res ; 258: 119451, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906443

RESUMO

A key challenge for the tannery industries is the volume of tannery waste water (TWW) generated during the processing of leather, releasing various forms of toxic heavy metals resulting in uncontrolled discharge of tannery waste (TW) into the environment leading to pollution. The pollutants in TW includes heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb) etc, when discharged above the permissible limit causes ill effects on humans. Therefore, several researchers have reported the application of biological and non-biological methods for the removal of pollutants in TW. This review provides insights on the global scenario of tannery industries and the harmful effects of heavy metal generated by tannery industry on micro and macroorganisms of the various ecological niches. It also provides information on the process, advantages and disadvantages of non-biological methods such as electrochemical oxidation, advanced oxidation processes, photon assisted catalytic remediation, adsorption and membrane technology. The various biological methods emphasised includes strategies such as constructed wetland, vermitechnology, phytoremediation, bioaugmentation, quorum sensing and biofilm in the remediation of heavy metals from tannery wastewater (TWW) with special emphasize on chromium.

18.
Int Microbiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916652

RESUMO

Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected. Phytoremediation is a method to alleviate heavy metals from the contaminated soil. The study aims to evaluate the phytoremediation ability of Vigna radiata L. (mung bean) in the absence and the presence of multi-metal tolerant and plant growth promoting Pseudomonas geniculata strain TIU16A3 isolated from soil of tannery industrial estate, Kolkata, West Bengal, India. The strain was further assessed with increasing concentrations of Cr, Cd, and Pb (10, 20, 40, and 80 µg/mL) when the mung bean plant was a test crop. The strain significantly increased plant growth, chlorophyll content, increased level of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, and decreased oxidative stress indicators like H2O2 and electrolyte leakage in the presence of Cr, Cd, and Pb as compared to plants grown in the absence of Pseudomonas geniculata strain. Shoot length responsive gene (Aux/IAA) in the presence of heavy metal alone and Pseudomonas geniculata treated Cd and Cr showed higher relative expression of (Aux/IAA) compared to Pb. Due to these intrinsic abilities, Pseudomonas geniculata strain TIU16A3 can be a plant growth promoter and thus can help in the remediation of heavy metal (Cr, Cd, and Pb) contaminated soil.

19.
Environ Pollut ; 357: 124376, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897277

RESUMO

We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.

20.
Sci Total Environ ; 944: 173838, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879025

RESUMO

The excessive accumulation of dibutyl phthalate (DBP) in soil poses a serious threat to soil ecosystems and crop safety production. Electrokinetic-assisted phytoremediation (EKPR) has been considered as a potential technology for remediating organic contaminated soils. In order to investigate the effect of different electric fields on removal efficiency of DBP, three kinds of electric fields were set up in this study (1 V·cm-1, 2 V·cm-1 and 3 V·cm-1). The results showed that 59 % of DBP in soil was removed by maize (Zea mays L.) within 20 d in low-intensity electric field (1 V·cm-1), and the accumulation of DBP in maize tissues decreased significantly compared to the non-electrified treatment group. Interestingly, it could be observed that the low-intensity electric field could maintain ion homeostasis and improve the photosynthetic efficiency of the plant, thereby relieving the inhibition of DBP on plant growth and increasing the chlorophyll content (94.1 %) of maize. However, the removal efficiency of DBP by maize decreased significantly under the medium-intensity (2 V·cm-1) and high-intensity electric field (3 V·cm-1). Moreover, the important roles of soil enzyme and rhizosphere bacterial community in low-electric field were also investigated and discussed. This study provided a new perspective for exploring the mechanism of removing DBP through EKPR.


Assuntos
Biodegradação Ambiental , Dibutilftalato , Poluentes do Solo , Zea mays , Zea mays/metabolismo , Poluentes do Solo/metabolismo , Dibutilftalato/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...