Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38967850

RESUMO

The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.

2.
Front Microbiol ; 15: 1411251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903784

RESUMO

The large amount of various types of heavy metals in animal manure applied to agricultural field has caused severe threat to the ecosystems of soil environments. In this study, the effect of thermal treatment of illite on the bioavailability of copper (Cu) and zinc (Zn) in the aerobic composting of pig manure with corn straw biochar was investigated. The objectives of this study were to characterize the variations in the bioavailability of Cu and Zn in the aerobic composting of pig manure added with illite treated with high temperatures and to identify the relatively dominant microbes involved in the formation of humus and passivation of heavy metals in pig manure composting based on 16S rRNA high-throughput sequencing analysis. The results showed that in comparison with the raw materials of pig manure, the bioavailability of Zn and Cu in the control and three experimental composting groups, i.e., group I (with untreated illite), group I-2 (with illite treated under 200°C), and group I-5 (with illite treated under 500°C), was decreased by 27.66 and 71.54%, 47.05 and 79.80%, 51.56 and 81.93%, and 58.15 and 86.60%, respectively. The results of 16S rRNA sequencing analysis revealed that in the I-5 group, the highest relative abundance was detected in Fermentimonas, which was associated with the degradation of glucose and fructose, and the increased relative abundances were revealed in the microbes associated with the formation of humus, which chelated with Zn and Cu to ultimately reduce the bioavailability of heavy metals and their biotoxicity in the compost. This study provided strong experimental evidence to support the application of illite in pig manure composting and novel insights into the selection of appropriate additives (i.e., illite) to promote humification and passivation of different heavy metals in pig manure composting.

3.
Bioresour Technol ; 402: 130783, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701980

RESUMO

This study investigated the effects of crayfish shell powder (CSP) and bamboo-derived biochar (BDB) on nitrogen metabolism, bacterial community and nitrogen functional genes during pig manure composting. Four treatments were established: CP (with no additives), TP1 (5 % BDB), TP2 (5 % CSP) and TP3 (2.5 % BDB + 2.5 % CSP). Compared to CP, the germination index (GI) of TP reached > 85 % 10 days earlier. Meanwhile, TP3 reduced NH3 and N2O emissions by 42.90 % and 65.9 %, respectively, while increased TN (total nitrogen) concentration by 5.43 g/kg. Furthermore, additives changed the bacterial structure and formed a beneficial symbiotic relationship with essential N-preserving bacteria, thereby enhancing nitrogen retention throughout the composting process. Metagenomic analysis revealed that additives upregulated nitrification genes and downregulated denitrification and nitrate reduction genes, ultimately improving nitrogen cycling and mitigating NH3 and N2O emissions. In conclusion, the results confirmed that TP3 was the most effective treatment in reducing nitrogen loss.


Assuntos
Astacoidea , Carvão Vegetal , Compostagem , Esterco , Nitrogênio , Animais , Compostagem/métodos , Carvão Vegetal/farmacologia , Suínos , Bactérias/genética , Bactérias/metabolismo , Pós , Exoesqueleto , Desnitrificação , Amônia/metabolismo
4.
Environ Int ; 187: 108732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728817

RESUMO

The spread of antibiotic resistance genes (ARGs) in agroecosystems through the application of animal manure is a global threat to human and environmental health. However, the adaptability and colonization ability of animal manure-derived bacteria determine the spread pathways of ARG in agroecosystems, which have rarely been studied. Here, we performed an invasion experiment by creating a synthetic communities (SynCom) with ten isolates from pig manure and followed its assembly during gnotobiotic cultivation of a soil-Arabidopsis thaliana (A. thaliana) system. We found that Firmicutes in the SynCom were efficiently filtered out in the rhizosphere, thereby limiting the entry of tetracycline resistance genes (TRGs) into the plant. However, Proteobacteria and Actinobacteria in the SynCom were able to establish in all compartments of the soil-plant system thereby spreading TRGs from manure to soil and plant. The presence of native soil bacteria prevented the establishment of manure-borne bacteria and effectively reduced the spread of TRGs. Achromobacter mucicolens and Pantoea septica were the main vectors for the entry of tetA into plants. Furthermore, doxycycline stress promoted the horizontal gene transfer (HGT) of the conjugative resistance plasmid RP4 within the SynCom in A. thaliana by upregulating the expression of HGT-related mRNAs. Therefore, this study provides evidence for the dissemination pathways of ARGs in agricultural systems through the invasion of manure-derived bacteria and HGT by conjugative resistance plasmids and demonstrates that the priority establishment of soil bacteria in the rhizosphere limited the spread of TRGs from pig manure to soil-plant systems.


Assuntos
Esterco , Rizosfera , Microbiologia do Solo , Resistência a Tetraciclina , Esterco/microbiologia , Animais , Suínos , Resistência a Tetraciclina/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Bactérias/genética , Transferência Genética Horizontal , Antibacterianos/farmacologia
5.
Sci Total Environ ; 940: 173513, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810756

RESUMO

Effective utilization of organic resources to activate residual phosphorus (P) in soil and enhance its availability is crucial for mitigating P resource scarcity and assessing the sustainable use of P in agricultural practices. However, the mechanisms through which organic resources affect soil P conversion via microorganisms and functional genes remain unknown, particularly in long-term organic-inorganic agricultural systems. In this study, we examined the impact of combined organic-inorganic fertilizer application on P availability, carbon (C) and P cycling genes, and microbial communities (bacterial and fungal) in reddish paddy soil based on a 42-year field experiment. The results indicated that long-term straw returning and pig manure application significantly augmented soil organic carbon (SOC), Olsen-P, microbial biomass carbon (MBC), microbial biomass phosphorus (MBP), enzyme-P, and CaCl2-P levels in paddy soils. Furthermore, these practices increased the abundance of soil C degradation genes, reduced the abundance of soil P cycling genes, and altered microbial community structure and network complexity. Notably, Module #3 ecological clusters in the fungal ecological co-occurrence network were significantly correlated with P cycling genes. Finally, our study demonstrated that long-term straw returning and pig manure application in paddy fields facilitated two robust and contrasting predictive relationships between C degradation (negative relationship) and P cycling (positive relationship) genes, respectively, and enzyme-P and HCl-P changes to improve soil P availability. This study can enhance our understanding of the role of soil microbial communities and functional genes in mediating P transformation to decipher the enhancement in P application efficiency driven by organic resources in reddish paddy soils.


Assuntos
Agricultura , Esterco , Fósforo , Microbiologia do Solo , Solo , Fósforo/análise , China , Solo/química , Animais , Agricultura/métodos , Suínos , Fertilizantes , Microbiota , Oryza , Carbono/análise
6.
Environ Technol ; : 1-10, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820584

RESUMO

The conventional aeration method is compulsorily continuous ventilation or aeration at equal intervals, and a uniform aeration rate does not vary during composting. A dynamic on-demand aeration approach based on the diverse oxygen consumption of microorganisms at different composting stages could solve the problems of insufficient oxygen supply or excessive aeration. This study aims to design an aerobic composting system with dynamic aeration, investigate the effects of dynamic aeration on the temperature rise and physicochemical characteristics during the aerobic composting of corn straw and pig manure, and optimise the control parameters of oxygen concentration. Higher temperatures and longer high-temperature durations were achieved under dynamic aeration, thereby accelerating the decomposition of organic compounds. Dynamic aeration effectively reduced the aeration frequency, the convective latent heat and moisture losses, and the power consumption in the middle and later stages of composting. The dynamic aeration regulated according to the oxygen concentration of 14%-17% in the exhaust was optimum. Under the optimal conditions, the period above 50 ℃ lasted 8.5 days, and the highest temperature, organic matter removal, and seed germination index reached 65.82 ℃, 37.59%, and 74.59%, respectively. The power consumption was decreased by 33.58% compared to the traditional intermittent aeration. Dynamic aeration would be a competitive approach for improving aerobic composting characteristics and reducing the power consumption and the hot exhaust gas emissions, especially in the cooling maturation stage, which was of great significance for realising the low-cost production of composting at scale and promoting the blossom of the organic fertiliser industry.

7.
J Hazard Mater ; 471: 134376, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657503

RESUMO

Pig manure (PM) is a high concentration organic waste rich in sulfur, and its biofuel contains various sulfur-containing pollutants, which reduces the safety of the products. Supercritical water (SCW) can dissolve most organic matter, which is a technology worthy of further study. In order to reduce sulfur pollution in the process of PM resource utilization and better control the conversion path of sulfur, it is necessary to explore the migration mechanism of sulfur in the whole PM-SCW gasification process. The experimental results indicated that H2S was the only gaseous product. Only inorganic compounds (S2-, S2O32- and SO42-) were detected in the liquid. Sulfur in the solid mainly included thiol/thioether, thiophene and sulfone. The influence of different reaction conditions (temperature, residence time, PM concentration and catalysts) on sulfur migration was studied in a batch reactor. It was worth noting that the catalysts had a significant effect on H2S absorption. The lowest H2S yield was 3.2 * 10-4 mol/kg and more than 70% of the sulfur was distributed in the liquid under the condition of addition of K2CO3. While, the RTH2110 fixed most of the sulfur of PM (the maximum value reached 50.94%) in the solid. Thus, adding the catalysts flexibly can choose composition of the products. Furthermore, six possible pathways of sulfur migration in the solid were designed and the kinetic parameters were calculated by density functional theory (DFT). The results provided a basis for controlling sulfur in PM. Subsequently, the sulfur migration pathways during PM-SCW gasification process were comprehensively summarized through the combination of experiment and DFT. It provided a method for sulfur treatment in PM, which had guiding significance for the realization of pollution-free treatment of PM.

8.
Front Microbiol ; 15: 1366814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577678

RESUMO

Introduction: Continuous strawberry cropping often causes soil-borne diseases, with 20 calcium cyanamide being an effective soil fumigant, pig manure can often be used as soil organic fertilizer. Its impact on soil microorganisms structure, however, remains unclear. Methods: This study investigated the effectiveness of calcium cyanamide and pig manure in treating strawberry soil, specifically against strawberry anthracnose. We examined the physical and chemical properties of the soil and the rhizosphere microbiome and performed a network analysis. Results: Results showed that calcium cyanamide treatment significantly reduces the mortality rate of strawberry in seedling stage by reducing pathogen abundance, while increasing actinomycetes and Alphaproteobacteria during the harvest period. This treatment also enhanced bacterial network connectivity, measured by the average connectivity of each Operational Taxonomic Unit (OTU), surpassing other treatments. Moreover, calcium cyanamide notably raised the levels of organic matter, available potassium, and phosphorus in the soil-key factors for strawberry disease resistance and yield. Discussion: Overall, applying calcium cyanamide to soil used for continuous strawberry cultivation can effectively decrease anthracnose incidence. It may be by changing soil physical and chemical properties and enhancing bacterial network stability, thereby reducing the copy of anthracnose. This study highlights the dual benefit of calcium cyanamide in both disease control and soil nutrient enhancement, suggesting its potential as a valuable tool in sustainable strawberry farming.

9.
Plants (Basel) ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611502

RESUMO

In recent years, overuse of chemical fertilization has led to soil acidification and decreased rice yield productivity in southern China. Biochar and manure co-application remediation may have positive effects on rice yield and improve acid paddy soil fertility. This study was conducted to understand the effects of co-application of wood biochar and pig manure on rice yield and acid paddy soil quality (0-40 cm soil layers) in a 5-year field experiment. The experiment consisted of six treatments: no biochar and no fertilizer (CK); biochar only (BC); mineral fertilizer (N); mineral fertilizer combined with biochar (N + BC); manure (25% manure N replacing fertilizer N) combined with mineral fertilizer (MN); and manure combined with mineral fertilizer and biochar (MN + BC). Total nitrogen application for each treatment was the same at 270 kg nitrogen ha-1y-1, and 30 t ha-1 biochar was added to the soil only in the first year. After five years, compared with N treatments, N + BC, MN, and MN + BC treatments increased the rice yield rate to 2.8%, 4.3%, and 6.3%, respectively, by improving soil organic matter, total nitrogen, and available phosphate under a 0-40 cm soil layer. MN + BC had the strongest resistance to soil acidification among all the treatments. The interaction between fertilizers and biochar application was significant (p < 0.05) in rice yield, soil electrical conductivity (10-20 cm), and soil available phosphate (20-40 cm). Principal component analysis indicated that the effect of manure on soil property was stronger than that of biochar in the 0-40 cm soil layer. The overall rice yield and soil fertility decreased in the order of biochar + mineral fertilizer + manure > mineral fertilizer + manure > biochar + mineral fertilizer > mineral fertilizer > biochar > control. These results suggest that biochar and manure co-application is a long-term viable strategy for improving acid soil productivity due to its improvements in soil pH, organic carbon, nutrient retention, and availability.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38483763

RESUMO

Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.

11.
J Environ Manage ; 354: 120340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368805

RESUMO

The performance of a pilot-scale thin-layer cascade photobioreactor, operated in semicontinuous mode, for the removal of veterinary drug residues and other contaminants of emerging concern (CECs) from pig manure has been assessed in six operation stages. Chlorella sp. (70-90%), Scenedesmus sp. (10-25%) and Diatomea (<5%) comprise the microalgae species present during the stages. The global performance to remove the total CEC content in the photobioreactor effluent varied from 62 to 86% on each stage, while an CEC mean amount close to 8% was accumulated in the photobioreactor biomass. A relation with weather conditions was not observed. Elimination ratio was not related to the concentration in the influent which reached up to 8000 ng L-1 for some CECs. As expected, the concentrations of veterinary drugs were higher than those of non-veterinary CECs. The concentrations accumulated in the grown biomass were relative low, lower than 10 ng per fresh g excepting for a few cases. However, statistical data suggested that the linkage of CECs to microalgae biomass boosted their removal from the influent. Furthermore, it was observed that the manure liquid phase contained higher amounts of CECs than the solid phase.


Assuntos
Chlorella , Microalgas , Scenedesmus , Suínos , Animais , Fotobiorreatores , Esterco , Biomassa
12.
Sci Total Environ ; 920: 170979, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367727

RESUMO

Organic amendments can improve soil fertility and microbial diversity, making agroecosystems more resilient to stress. However, it is uncertain whether organic amendments will enhance the functional capacity of soil microbial communities, thereby mitigating fluctuations in microbial respiration caused by environmental changes. Here, we examined the impacts of long-term organic amendments on the dynamics of microbial catabolic capacity (characterized by enzyme activities and carbon source utilization) and microbial respiration, as well as their interrelationships during a period with fluctuating temperature and rainfall in the field. We then subjected the field soil samples to laboratory heating disturbances to further evaluate the importance of microbial catabolic capacity in explaining patterns of microbial respiration. In both field and laboratory experiments, organic amendments tended to increase the stability of microbial catabolic capacity, but significantly increased the vulnerability of microbial respiration to environmental changes. However, the direction and driving factors of microbial respiration affected by environmental changes differed between the field and laboratory experiments. Environmental changes in the field suppressed the promotional effects of organic amendments on microbial respiration mainly through reducing microbial catabolic capacity, while laboratory heating further enhanced microbial respiration mainly due to increased soil resource availability. Together, these findings suggest that increased microbial respiration variations under organic amendments may potentially increase the uncertainty in predicting soil carbon emissions in the scenario of ongoing climate/anthropogenic changes, and highlight the necessity of linking laboratory studies on environmental changes to field conditions.


Assuntos
Carbono , Microbiologia do Solo , Carbono/metabolismo , Solo , Temperatura
13.
J Hazard Mater ; 468: 133792, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368685

RESUMO

Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.


Assuntos
Doenças Transmissíveis , Desinfetantes , Humanos , Solo , Antibacterianos/toxicidade , Esterco/microbiologia , Genes Bacterianos , Desinfetantes/toxicidade , Desinfetantes/análise , Microbiologia do Solo , Bactérias/genética , Sulfametazina
14.
Zool Res ; 45(1): 189-200, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199973

RESUMO

Monitoring the prevalence of antimicrobial resistance genes (ARGs) is vital for addressing the global crisis of antibiotic-resistant bacterial infections. Despite its importance, the characterization of ARGs and microbiome structures, as well as the identification of indicators for routine ARG monitoring in pig farms, are still lacking, particularly concerning variations in antimicrobial exposure in different countries or regions. Here, metagenomics and random forest machine learning were used to elucidate the ARG profiles, microbiome structures, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs ( P<0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were identified as shared core ARGs between the two pig populations. Furthermore, the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions. Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100% and 98.7%, respectively. Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy ( r=0.72-0.88). Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs. The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Humanos , Animais , Suínos , Antibacterianos/farmacologia , Esterco , Farmacorresistência Bacteriana/genética
15.
Sci Total Environ ; 915: 170116, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232831

RESUMO

Pyrolysis is an effective method for treating of livestock and poultry manure developed in recent years. It can completely decompose pathogens and antibiotics, stabilize heavy metals, and enrich phosphorus (P) in biochar. To elucidate the P migration mechanism under different pig manure pyrolysis temperatures, sequential fractionation, solution 31P nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction, and K-edge X-ray absorption near-edge structure techniques were used to analyze the P species in pig manure biochar (PMB). The results indicated that most of the organic P in the pig manure was converted to inorganic P during pyrolysis. Moreover, the transformation to different P groups pathways was clarified. The phase transition from amorphous to crystalline calcium phosphate was promoted when the temperature was above 600 °C. The content of P extracted by hydrochloric acid, which was the long-term available P for plant uptake, increased significantly. PMB pyrolyzed at 600 °C can be used as a highly effective substitute for P source. It provides the necessary P species (e.g. water-soluble P.) and metal elements for the growth of water spinach plants, and which are slow-release comparing with the Hogland nutrient solution.


Assuntos
Esterco , Pirólise , Animais , Suínos , Hidroponia , Fósforo/química , Carvão Vegetal/química
16.
J Environ Manage ; 352: 120048, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38246105

RESUMO

Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.


Assuntos
Compostagem , Mercúrio , Metais Pesados , Microbiota , Suínos , Animais , Esterco , Solo , Metais Pesados/análise , Carvão Vegetal/química
17.
Waste Manag ; 176: 64-73, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266476

RESUMO

During the conversion of pig manure by black soldier fly larvae (BSFL), the accumulation and speciation changes of heavy metals (HMs) have adverse effects on the environment. In this study, corn straw, rice straw, bamboo chips (BC), wood chips, and rice husk char were added to a bioconversion system to study the accumulation, migration, speciation changes, and microbial correlations of HMs. The results indicated that the addition of BC was most beneficial for the accumulation of HMs (47-72 %) in the BSFL body. In the BC group, the accumulation effect of the BSFL body on zinc (Zn) and arsenic (As) was the most evident (72 and 71 %, respectively). The results of linear fitting (R2 > 0.90) and redundancy analysis (RDA; 90 %) indicated that the bacterium Bacillaceae (Bacillus) was beneficial for increasing the larval weight (LW) of BSFL, and a higher LW accumulated HMs. The addition of BC helped reduce the total amount (6-51 %) of available states (weak acid extraction and reducible states) in the BSFL residue. The RDA results indicated that bacteria (55-92 %) affected the transformation of HM speciation. For example, Zn and cadmium were mainly affected by Firmicutes, whereas copper and chromium were affected by Bacteroidetes. Proteobacteria and Pseudomonas formosensis affected the conversion of lead and As. This study provides important insights into the adsorption of HMs from pig manure by BSFL.


Assuntos
Arsênio , Dípteros , Metais Pesados , Animais , Suínos , Larva , Esterco , Disponibilidade Biológica , Bactérias
18.
Bioresour Technol ; 393: 130030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977497

RESUMO

The objective of this study was to elucidate the combined effect of a semi-permeable membrane (M) and mature compost (MC) on humification and fungal community succession in pig manure composting. Compared with the control, the concentrations of humic substances (HSs) increased by 44.54 % (M + 15 % MC) and 43.90 % (M). During the thermophilic phase, Aspergillus (67.26 %) was the dominant genus in the M + 15 % MC treatment. Membrane covering increased the relative abundance (RA) of other phyla (except for Ascomycetes and Basidiomycetes) on the 14th day and Basidiomycetes on the 80th day in M treatment. Humic acid, HSs were positively correlated with the RA of genera Myceliophthora, Kernia, and Mycothermus. Myceliophthora was the key genus in the M + 15 % MC treatment on the 80th day. The results showed that 15 % MC addition under membrane covering optimizes the quality of composting products.


Assuntos
Compostagem , Micobioma , Animais , Suínos , Solo , Esterco/microbiologia , Substâncias Húmicas
19.
Bioresour Technol ; 394: 130256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145762

RESUMO

Nitrogen is a valuable nutrient element in pig manure. This work focuses on investigating the distribution, directional transformation, and migration pathways to facilitate the recovery of nitrogen from supercritical water gasification products. Results indicated that no nitrogen-containing gas was detected and 12.65 % of nitrogen remained in solid products. 82.49 % of nitrogen migrated into liquid products, which are predominated by ammonia. Catalysts were employed to promote the conversion of solid nitrogen to liquid nitrogen and organic nitrogen to ammonia. Finally, 85 % of nitrogen is enriched into liquid products and ammonia predominated the liquid nitrogen. The percentage of ammonia increased to 97.51 % at 620 °C in the presence of potassium carbonate. The migration pathways indicated that nitrogen was transformed into ammonia by various intermediates such as indole. The rest of the nitrogen remained in solid products with stable quaternary-nitrogen. These findings provide valuable insights into nitrogen management and recovery.


Assuntos
Esterco , Nitrogênio , Animais , Suínos , Nitrogênio/análise , Amônia , Água , Gases
20.
Sci Total Environ ; 912: 169579, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145667

RESUMO

The study investigated the influence of varied moisture levels in pig manure on the gut microbiome of black soldier fly larvae (BSFL) and their waste conversion efficiency. This encompassed alterations in nutrient components of both BSFL and pig manure, diversity and characterization of the BSFL gut microbiota, and the reciprocal effects between the BSFL gut microbiota and their growth performance and nutrient composition. Additionally, the investigation delved into the changes in the bacterial community and the presence of potential pathogenic bacteria in pig manure. An initial mixture of fresh pig manure and wheat bran was prepared with a 60 % moisture content (Group A). Distilled water was subsequently added to adjust the moisture levels, resulting in mixtures with 65 % (Group B), 70 % (Group C), and 75 % (Group D) moisture content. Each group underwent BSFL digestion over ten days. Groups C (3.87 ± 0.05 mg/worm) and D (3.97 ± 0.08 mg/worm) showed significantly higher bioconversion efficiencies and enhanced BSFL growth compared to Groups A (2.66 ± 0.21 mg/worm) and B (3.09 ± 0.09 mg/worm) (P < 0.05). A 75 % moisture level was identified as ideal, positively influencing fecal conversion efficiency (FCE) (9.57 ± 0.14 %), crude fat intake (8.92 ± 0.56 %), protein (46.60 ± 0.54 %), and total phosphorus (1.37 ± 0.08 %) from pig manure, and subsequent nutrient accumulation in BSFLs. A decline in larval crude ash content indicated higher organic matter and an increased pig manure conversion rate with elevated moisture. High-throughput sequencing and diversity analyses confirmed different moisture contents influenced the BSFL gut microbiota. Bacteroidetes (32.7-62.0 %), Proteobacteria (6.8-29.3 %), Firmicutes (5.8-23.4 %), and Actinobacteria (1.9-29.0 %) were predominant phyla. A 75 % moisture content significantly impacted the BSFL biomass conversion and growth performance. Additionally, Larval feces met non-hazardous fertilizer standards, according to NY-525 (2012).


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Suínos , Larva , Esterco , Fezes , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...