Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38376782

RESUMO

Gas-permeable membrane (GPM) technology is gaining interest to recover nitrogen from residual effluents due to its effectiveness, simple operation and capacity of producing a nutrient rich product with fertilising value. In this study, a GPM contactor was used at 25 °C to recover total ammoniacal nitrogen (TAN) from swine slurry as a concentrated (NH4)2SO4 solution. Firstly, a synthetic solution was tested on a wide pH range (6-12). Results showed that the ammonia mass transfer constants (Km) increased from 7.9·10-9 to 1.2·10-6 m/s as the pH increased. The reagent consumption to control the pH per mole nitrogen recovered had a minimum at pH 9, which showed a Km value of 3.0·10-7 m/s. Secondly, various pH control strategies were tested using swine slurry, including (i) no pH control, (ii) pH control at 8.5, 9.0 and 10.0, and (iii) an initial spike of the NaOH equivalent to the required to control the pH at 9. The test without pH control reached a TAN recovery of around 60%, which could be an interesting strategy when high nitrogen recoveries or short operating times are not required. The pH control at 9 stood out as the most favourable operating condition due to its high Km and lower reagent consumption. Thirdly, several feed-to-trapping volume ratios ranging from 1:1 to 15:1 were tested using swine slurry at pH 9. These assays revealed that a GPM process with a high feed-to-trapping volume ratio fastens the recovery of 99% of TAN as a high purity (NH4)2SO4 solution containing 40 g N/L.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508853

RESUMO

Deammonification is a well-established process for sludge liquor treatment and promising for wastewaters with high nitrogen loads because of its low energy demand compared to nitrification/denitrification. Two wastewaters with high NH4-N concentrations and a rising significance in Germany-pig slurry (12 samples) and condensates from sewage sludge drying (6 samples)-were studied for their deammonification potential. Furthermore, a comprehensive quality assessment is presented. Both wastewaters show a wide range in terms of CODt, CODs, TN and NH4-N, whereby condensates show a greater variability with no direct relation to dryer type or temperature. In the slurries, CODt shows a relative standard deviation of 106% (mean 21.1 g/L) and NH4-N of 33% (mean 2.29 g/L), while in condensates it reaches 148% for CODt (mean 2.0 g/L) and 122% for NH4-N (mean 0.7 g/L). No inhibition of ammonium-oxidizing-bacteria was detected in the slurries, while two out of five condensates showed an inhibition of >40%, one of >10% and two showed no inhibition at all. Since the inhibition could be avoided by mixing, deammonification can be recommended for condensate treatment. For slurry treatment, the importance of employing some form of solid-liquid-separation as a pretreatment was noted due to the associated COD.

3.
Waste Manag ; 169: 223-231, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459826

RESUMO

Manure management is a significant source of methane (CH4) and ammonia (NH3), and there is an urgent need for strategies to reduce these emissions. More frequent export of manure for outside storage can lower gaseous emissions from housing facilities, but the longer residence time may then increase emissions during outside storage. This study examined CH4 and NH3 emissions from liquid pig manure (pig slurry) removed from the in-house slurry collection pits at three different frequencies, i.e., three times per week (T2.3), once per week (T7), or once after 40 days (T40, reference). The slurry from treatments T2.3 and T7 was transferred for outside storage weekly over four weeks, and slurry from treatment T40 once after 40 days, in connection with summer and winter production cycles with growing-finishing pigs. The slurry was stored in pilot-scale storage tanks with solid cover and continuous ventilation. Compared to T40, the treatments T2.3 and T7 increased CH4 emissions during outside storage, but in-house emissions were reduced even more, and the net effects on total CH4 emissions from manure management (housing unit and outside storage) were reductions of 18-41% in summer and 53-83% in winter. The frequent slurry export for outside storage led to more NH3 emissions, except for the treatment T2.3, which has slurry funnel inserts beneath the slatted floor. Measurements of in-vitro CH4 production rates suggested that shorter residence time for slurry in pig houses delayed the development of active methanogenic populations, and that this contributed to the reduction of CH4 emissions.


Assuntos
Amônia , Metano , Animais , Suínos , Amônia/análise , Esterco , Estações do Ano , Gases
4.
Anim Sci J ; 94(1): e13849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37392138

RESUMO

In this work, 124 samples of slurry from 32 commercial farms of three animal categories (lactating sows, nursery piglets, and growing pigs) were studied. The samples were collected in summer and winter over two consecutive years and analyzed for physicochemical properties, macronutrient and micronutrient, heavy metals, and major microbiological indicators. The results were found to be influenced by farm type and to deviate especially markedly in nursery piglets, probably as a consequence of differences in pig age, diet, and management. The main potential hazards of the slurries can be expected to arise from their high contents in heavy metals (Cu and Zn), especially in the nursery piglet group, and from the high proportion of samples testing positive for Salmonella spp. (66%). Linear and nonlinear predictive equations were developed for each animal category and the three as a whole. Dry matter, which was highly correlated with N, CaO, and MgO contents, proved the best predictor of fertilizer value. Using an additional predictor failed to improve the results but nonlinear and farm-specific equations did. Rapid on-site measurements can improve the accuracy of fertilizer value estimates and help optimize the use of swine slurry as a result.


Assuntos
Bacteriologia , Metais Pesados , Animais , Feminino , Suínos , Fertilizantes , Lactação , Nutrientes
5.
Front Microbiol ; 14: 1180018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266025

RESUMO

Due to the high global warming potential (GWP) in a short time scale (GWP100 = 28 vs. GWP20 = 86), mitigating CH4 emissions could have an early impact on reducing current global warming effects. The manure storage tank emits a significant amount of CH4, which can diminish the environmental benefit resulting from the anaerobic digestion of manure that can generate renewable energy. In the present study, we added the reverse osmosis concentrate (ROC) rich in salt to the pig slurry (PS) storage tank to reduce CH4 emissions. Simultaneously, pure NaCl was tested at the same concentration to compare and verify the performance of ROC addition. During 40 days of storage, 1.83 kg CH4/ton PS was emitted, which was reduced by 7-75% by the addition of ROC at 1-9 g Na+/L. This decrease was found to be more intensive than that found upon adding pure sodium, which was caused by the presence of sulfate rich in ROC, resulting in synergistic inhibition. The results of the microbial community and activity test showed that sodium directly inhibited methanogenic activity rather than acidogenic activity. In the subsequent biogas production from the stored PS, more CH4 was obtained by ROC addition due to the preservation of organic matter during storage. Overall, 51.2 kg CO2 eq./ton PS was emitted during the storage, while 8 kg CO2 eq./ton PS was reduced by biogas production in the case of control, resulting in a total of 43.2 kg CO2 eq./ton PS. This amount of greenhouse gas emissions was reduced by ROC addition at 5 g Na+/L by 22 and 65 kg CO2 eq./ton PS, considering GWP100 and GWP20 of CH4, respectively, where most of the reduction was achieved during the storage process. To the best of our knowledge, this was the first report using salty waste to reduce GHG emissions in a proper place, e.g., a manure storage tank.

6.
Waste Manag ; 168: 406-412, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354632

RESUMO

Storing pig slurry (PS) and returning it to the field is one of the most important ways to recycle PS. However, during the storage of PS, the NH3 emissions cause a large loss of nitrogen (N), which reduces the fertilizer value of stored PS and cause environmental pollution. To reduce N loss during PS storage, we added different amounts of wheat straw powder (WSP) and wheat straw segments (WSSs) to the PS. The wheat straw cover was used for biochar production, and then, the biochar was used for N adsorption from the PS. The results showed that the N loss of PS was significantly decreased by use of the wheat straw covering. The N losses in treatments of WSP covering and WSSs covering were reduced by 4.8-53.1 and 0.8-14.2 percentage points compared with that in the control, respectively. Ammonia adsorption is an important reason for the reduction in N loss by straw covering during PS storage. After covering for 180 days in storage, the NH4+-N content in both the WSP covering and WSSs covering increased greatly, and the cover was reused for biochar production. The biochar yield was inversely proportional to the pyrolysis temperature, and the specific surface area and pore volume of the biochar were proportional to the pyrolysis temperature. We achieved the highest amount of NH4+-N adsorption (1.9 mg/g) with a biochar dosage of 0.2 g/L (treatment Y-400). This study provides a new straw-covered PS storage method to achieve straw recycling and low N loss during PS storage.


Assuntos
Nitrogênio , Triticum , Suínos , Animais , Nitrogênio/análise , Amônia/análise , Carvão Vegetal , Solo
7.
Membranes (Basel) ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103798

RESUMO

The environmental impact of biowaste generated during animal production can be mitigated by applying a circular economy model: recycling, reinventing the life cycle of biowaste, and developing it for a new use. The aim of this study was to evaluate the effect of adding sugar concentrate solutions obtained from the nanofiltration of fruit biowaste (mango peel) to slurry from piglets fed with diets incorporating macroalgae on biogas production performance. The nanofiltration of ultrafiltration permeates from aqueous extracts of mango peel was carried out using membranes with a molecular weight cut-off of 130 Da until a volume concentration factor of 2.0 was reached. A slurry resulting from piglets fed with an alternative diet with the incorporation of 10% Laminaria was used as a substrate. Three different trials were performed sequentially: (i) a control trial (AD0) with faeces resulting from a cereal and soybean-meal-based diet (S0); (ii) a trial with S1 (10% L. digitata) (AD1), and (iii) an AcoD trial to assess the effect of the addition of a co-substrate (20%) to S1 (80%). The trials were performed in a continuous-stirred tank reactor (CSTR) under mesophilic conditions (37.0 ± 0.4 °C), with a hydraulic retention time (HRT) of 13 days. The specific methane production (SMP) increased by 29% during the anaerobic co-digestion process. These results can support the design of alternative valorisation routes for these biowastes, contributing to sustainable development goals.

8.
Sci Total Environ ; 874: 162548, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870507

RESUMO

Livestock slurry has been reported to be a potential secondary raw material as it contains macronutrients ­nitrogen, phosphorus and potassium-, which could be valorised as high-quality fertilizers if proper separation and concentration of valuable compounds is performed. In this work, pig slurry liquid fraction was assessed for nutrient recovery and valorisation as fertilizer. Some indicators were used to evaluate the performance of proposed train of technologies within the framework of circular economy. As ammonium and potassium species are highly soluble at the whole pH range, a study based on phosphate speciation at pH from 4 to 8 was assessed to improve the macronutrients recovery from the slurry, resulting in two different treatment trains at acidic and alkaline conditions. The acidic treatment system based on centrifugation, microfiltration and forward osmosis was applied to obtain a nutrient-rich liquid organic fertilizer containing 1.3 % N, 1.3 % P2O5 and 1.5 % K2O. The alkaline path of valorisation was composed by centrifugation and stripping by using membrane contactors to produce an organic solid fertilizer -7.7 % N, 8,0 % P2O5 and 2.3 % K2O-, ammonium sulphate solution -1.4 % N- and irrigation water. In terms of circularity indicators, 45.8 % of the initial water content and <50 % of contained nutrients were recovered - 28.3 % N, 43.5 % P2O5 and 46.6 % K2O - in the acidic treatment resulting in 68.68 g fertilizer per kg of treated slurry. 75.1 % of water was recovered as irrigation water and 80.6 % N, 99.9 % P2O5, 83.4 % K2O was valorised in the alkaline treatment, as 219.60 g fertilizer per kg of treated slurry. Treatment paths at acidic and alkaline conditions yield promising results for nutrients recovery and valorisation as the obtained products (nutrient rich organic fertilizer, solid soil amendment and ammonium sulphate solution) fulfil the European Regulation for fertilizers to be potentially used in crop fields.


Assuntos
Fertilizantes , Nitrogênio , Suínos , Animais , Fertilizantes/análise , Sulfato de Amônio , Fósforo , Ácidos , Potássio , Água , Nutrientes
9.
Animals (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36899713

RESUMO

Large-scale pig farming is associated with the production of large amounts of animal excrement, which, after processing into the form of, e.g., slurry, are managed on agricultural land as natural fertilizers. The utilization of pig manure on agricultural land in an excessive and uncontrolled manner may pose a threat to zoonoses due to the significant amounts of potentially pathogenic microorganisms within its content. This study aims to determine the impact of the methane fermentation process carried out in two agricultural biogas plants on the efficiency of sanitization of pig slurry, input biomass, and digestate. The biogas plants differed in terms of the substrate used; one used pig slurry from a maternal (breeding) farm (BP-M), and the other utilized pig slurry from a fattening farm (BP-F). The physicochemical analyses showed that the slurry, input biomass, and digestate from the BP-F were characterized by a significantly higher contents of organic dry matter, ash, and ammonium nitrogen than the slurry, input biomass, and digestate from the BP-M. The parameters of the methane fermentation process, including temperature and pH, reached higher values in the BP-F compared to the BP-M. The microbiological analyses led to the conclusion that the efficiency of sanitization of input biomass, including pig slurry, was significantly higher in the BP-F compared to the BP-M. Due to the above findings, locating biogas plants near pig fattening farms should be recommended.

10.
Data Brief ; 45: 108684, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426037

RESUMO

The electrical resistivity tomography (ERT) technique was employed with the support of geochemical analyses to delimit the affected surface area by slurry pig ponds. Data were taken in three selected slurry ponds located in Fuente Álamo municipality, Murcia region (SE Spain), to obtain electrical resistivity value-based 2D sections and 3D blocks. All ERT-based survey data were obtained in September 2020 using a SuperSting R8 resistivity meter from Advanced Geosciences Inc. and using the dipole-dipole array consisting of a total of twenty-eight electrodes. The soil samples were taken from drilling core sampling by boreholes at each slurry pond, and physical-chemical analyses of soil samples were obtained using standard laboratory testing methods. Electrical resistivity values and physical-chemical analysis data obtained from soil samples were contrasted, whose comparison showed a correlation between profiles-based electrical resistivity, laboratory-based electrical conductivity (EC) data, and nitrate (N-NO3-) content from soil samples. The statistical analysis was run by SPSS Statistics v.23 software (IBM, Neconductivity York, NY, USA) to establish the non-parametric Spearman correlation. The dataset establishes a reliable methodology and provides insight and information to delimit the affected subsurface area by pig slurry. Data contained within this publication are presented concurrently with Capa-Camacho et al. 2022 [1].

11.
Membranes (Basel) ; 12(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135869

RESUMO

The rapid growth of the livestock sector in some areas of Europe has caused an imbalance between the generation of livestock manure and the availability of agricultural soil for its direct application as a fertilizer. Since the transport of pig slurry to other areas with nutrient-deficient soils is costly from an economic point of view due to its high water content, the application of new technologies for the concentration of this waste is considered key for reducing management costs. Consequently, the main objective of this study was to demonstrate the potential of vibratory shear enhanced processing (VSEP) operated with reverse osmosis membranes to recover nutrients from the liquid fractions of pig slurry (LF-pig slurry) and digestate (LF-digestate) and obtain concentrated fertilizing products. Use of the VSEP unit permitted reductions in the water contents of the LF-pig slurry and LF-digestate, around 77% and 67%, respectively. Both VSEP concentrates were characterized by their significant nutrient contents and showed a nitrogen fertilizer replacement value similar to that of mineral fertilizer as demonstrated in a barley crop pot-test, although the salinity of the digestate concentrate was identified as a key limitation, negatively impacting the agronomic yield of the test crop.

12.
Sci Total Environ ; 848: 157779, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926606

RESUMO

The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.


Assuntos
Poluentes do Solo , Solo , Silicatos de Alumínio , Animais , Argila , Cobre/análise , Compostos Férricos , Caulim , Minerais/química , Solo/química , Poluentes do Solo/análise , Sulfetos , Suínos
13.
Waste Manag ; 149: 199-206, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752107

RESUMO

Anaerobic digestion of animal slurry to produce biogas is the dominated treatment approach and a storage period is normally applied prior to digestion. Pre-storage, however, contributes to CH4 emissions and results in loss of biogas potential. Manure management was found to be an efficient approach to reduce not only the on-site CH4 emission but may also have extended influence on CH4 emission/losses for storage and subsequent biogas process, while the connection remains unclear. The objective of this study was therefore to evaluate the impact of slurry management (e.g. removal frequency) on CH4 emission (both on-site and storage process prior to biogas) and biogas yield. An experimental pig house for growing-finishing pigs (30-110 kg) and the relevant CH4 emission was monitored for one year. In addition, the specific CH4 activity (SMA) test was conducted and used as an alternative indicator to reflect the impact. Results showed that the manure management affected both on-site and subsequent methane emission; with increased manure removal frequencies, the methane emission became less dependent on variation of temperatures and the specific methanogenesis activity was significantly lower. The highest SMA (100 mL CH4 gVS-1), for instance, was observed from the slurries with limited emptied times, which was 10 times of that from the slurries being emptied three times a week. These findings could enlighten the development of environmentally friendly strategies for animal slurry management and biogas production.


Assuntos
Biocombustíveis , Esterco , Animais , Reatores Biológicos , Metano , Suínos , Temperatura
14.
J Environ Manage ; 314: 115035, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436706

RESUMO

Pyrolysis converts nutrient-rich residues (e.g., sewage sludge and manures) into biochar with low levels of organic contaminants and high nutrient contents. However, the availability of phosphorus (P) as one of the key nutrients in such biochar tends to be low and new approaches are needed to enhance P-availability. In this work we tested and optimised one such method, doping biomass prior to pyrolysis with potassium (K) as potassium acetate. The treatment worked effectively in both pyrolysis units tested (microscale and lab-scale, continuous unit) and all three feedstocks (two types of sewage sludges and swine manure). The most dramatic effect was observed in the microscale pyrolysis unit at 400 °C where 5% K doping increased the water-extractable P content 700-fold to 43% of total P. Of the added K, on average 90% was retained in biochar after pyrolysis of which ∼50% was water-extractable. The proposed method enables conversion of low-value residues into valuable resources with agronomically relevant total and available P and K levels. This approach does not require specialised equipment or process modifications and is therefore easy to implement and relatively cheap (∼US$ 60-80 t-1 treated feedstock). It can present an urgently required solution to fulfil regulatory requirements for P-recovery.


Assuntos
Esterco , Esgotos , Animais , Carvão Vegetal/química , Fósforo , Acetato de Potássio , Esgotos/química , Suínos , Água/química
15.
Environ Pollut ; 305: 119271, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398400

RESUMO

Direct application of pig slurry to agricultural land, as a means of nutrient recycling, introduces pathogens, antibiotic resistant bacteria, or genes, to the environment. With global environmental sustainability policies mandating a reduction in synthetic fertilisation and a commitment to a circular economy it is imperative to find effective on-farm treatments of slurry that maximises its fertilisation value and minimises risk to health and the environment. We assessed and compared the effect of storage, composting, and anaerobic digestion (AD) on pig slurry microbiome, resistome and nutrient content. Shotgun metagenomic sequencing and HT-qPCR arrays were implemented to understand the dynamics across the treatments. Our results identified that each treatment methods have advantages and disadvantages in removal pollutants or increasing nutrients. The data suggests that storage and composting are optimal for the removal of human pathogens and anaerobic digestion for the reduction in antibiotic resistance (AMR) genes and mobile genetic elements. The nitrogen content is increased in storage and AD, while reduced in composting. Thus, depending on the requirement for increased or reduced nitrogen the optimum treatment varies. Combining the results indicates that composting provides the greatest gain by reducing risk to human health and the environment. Network analysis revealed reducing Proteobacteria and Bacteroidetes while increasing Firmicutes will reduce the AMR content. KEGG analysis identified no significant change in the pathways across all treatments. This novel study provides a data driven decision tree to determine the optimal treatment for best practice to minimise pathogen, AMR and excess or increasing nutrient transfer from slurry to environment.


Assuntos
Compostagem , Microbiota , Anaerobiose , Animais , Antibacterianos/farmacologia , Esterco/análise , Metagenoma , Microbiota/genética , Nitrogênio/análise , Suínos
16.
Animals (Basel) ; 12(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35327144

RESUMO

The current trend towards larger pig farms increases their profitability but might harm animal welfare and the environment. More efficient pig manure management is a way to address this challenge. Available manure handling and utilisation systems may feature from 8 to 50% nutrient loss to the environment. Therefore, the proper choice of technological solutions is of high priority. In regard, the study developed a methodology including calculation, analysis and modelling techniques for the accurate accounting of manure amount, its fractions and their nitrogen and phosphorus content for different processing technologies with due regard to the limiting factors of the farm and the end-product consumer requirements. The methodology was applied to justify the best suitable processing technology for a large-scale pig farm in the Leningrad Region with 17,800 heads of pigs and 54,750 t of pig manure per year. The selected technology included manure separation into fractions, aeration and secondary sedimentation of the liquid fraction and passive composting of the solid fraction. It demonstrated the total amount of nitrogen (N) and phosphorus (P) in the end-products of 278.94 t per year, with the 26% total nutrients loss on all technological stages, and specific capital and operating costs of USD 55.5 per ton of manure produced. The methodology was tested by comparing the calculated data and the data from previous surveys of 15 pig farms in Russia. The differences between the values were found from 0.9 to 12.5% in mass; 2.8 to 13.9% in N content and 1.7 to 9.9% in P content. The developed methodology supports planning the production of the manure-based end-products in a given amount and with target nutrient content, depending on different processing technological solutions, achieving both economic and environmental goals.

17.
Sci Total Environ ; 823: 153533, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150964

RESUMO

A significant amount of CH4 is emitting from livestock manure (LM) storage tank, which is being counted according to the guidelines provided by the Intergovernmental Panel on Climate Change (IPCC). Among various parameters affecting CH4 conversion factor (MCF) of LM, temperature is known as the most influential factor. As a degree of temperature, atmospheric temperature (Ta), not the manure temperature (Tm), is used for determining the MCF. Currently, the closed-type tank is more common than open-type tank, which would cause the substantial difference between Ta and Tm, probably due to the automatic temperature rise (ATR). Here, we repeatedly observed the ATR by storing pig slurry (PS) in a pilot-scale tank (30 m3, surface/volume ratio of 1.9), and its consequent impact on the increased CH4 emissions by comparing with the results from a lab-scale tank (1 L, surface/volume ratio of 72.2) controlled at 30 °C. As storage began, the Tm increased gradually from 16 to 23 °C to above 30 °C even in winter (-5 °C < Ta < 15 °C). During 30 d of storage, the CH4 emissions of 1.3-2.5 kg CH4/ton PS (MCF 26-29%) was observed in the lab-scale tank, while the emissions was increased to 2.6-4.2 kg CH4/ton PS (MCF 40-50%) in the pilot-scale tank (Two-Tail test, |tt|<|tc|). For the first time, a detailed heat energy balance considering the waste heat from organic degradation, the heat requirement for warm up, and the heat loss by convection, was conducted, proving that the waste heat generated during storage was enough to reach above 30 °C. Cooling-down of LM at 20 °C was found to be effective for reducing CH4 emissions by 90%, which sufficiently offset the greenhouse gas emissions in power consumption for cooling. Our findings strongly suggest that more CH4 is emitting from LM storage tank than expected, and therefore, the IPCC needs to develop guidelines more accurately in determining MCF.


Assuntos
Gases de Efeito Estufa , Esterco , Animais , Temperatura Baixa , Esterco/análise , Metano/análise , Suínos , Temperatura
18.
Anim Biosci ; 34(12): 2023-2033, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33902171

RESUMO

OBJECTIVE: The present study was conducted to assess the effect of urease inhibitor (hydroquinone [HQ]) and nitrification inhibitor (dicyandiamide [DCD]) on nitrogen (N) use efficiency of pig slurry for perennial ryegrass regrowth yield and its environmental impacts. METHODS: A micro-plot experiment was conducted using pig slurry-urea 15N treated with HQ and/or DCD and applied at a rate of 200 kg N/ha. The flows of N derived from the pig slurry urea to herbage regrowth and soils as well as soil N mineralization were estimated by tracing pig slurry-urea 15N, and the N losses via ammonia (NH3), nitrous oxide (N2O) emission, and nitrate (NO3-) leaching were quantified for a 56 d regrowth of perennial ryegrass (Lolium perenne) sward. RESULTS: Herbage dry matter at the final regrowth at 56 d was significantly higher in the HQ and/or DCD applied plots, with a 24.5% to 42.2% increase in 15N recovery by herbage compared with the control. Significant increases in soil 15N recovery were also observed in the plots applied with the inhibitors, accompanied by the increased N content converted to soil inorganic N (NH4+ +NO3-) (17.3% to 28.8% higher than that of the control). The estimated loss, which was not accounted for in the herbage-soil system, was lower in the plots applied with the inhibitors (25.6% on average) than that of control (38.0%). Positive effects of urease and/or nitrification inhibitors on reducing N losses to the environment were observed at the final regrowth (56 d), at which cumulative NH3 emission was reduced by 26.8% (on average 3 inhibitor treatments), N2O emission by 50.2% and NO3- leaching by 10.6% compared to those of the control. CONCLUSION: The proper application of urease and nitrification inhibitors would be an efficient strategy to improve the N use efficiency of pig slurry while mitigating hazardous environmental impacts.

19.
Sci Total Environ ; 753: 142080, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32898812

RESUMO

The use of sulfuric acid (SA) for reducing greenhouse gases (GHGs, mainly CH4) emissions in manure management encounters with problems related with safety issue and increased H2S emissions. In the present study, citric acid (CA) as an alternative to SA was assessed in the lab-scale experiment at various dosages (pH 5.0-7.0), and then confirmed in the pilot-scale tank (effective volume of 30 ton). During 35 d of pig slurry (PS) storage at 30 °C, it was found that the CA addition to initial pH down to 6.5 could lead negligible reduction, while 85-99% and 48-72% reduction of CH4 and H2S emissions were achieved at pH ≤ 6.0, respectively. The similar reduction performance was confirmed (control vs. pH 6.0) in the pilot-scale test, but, interestingly, two times higher CH4 emissions of 123.7 kg CO2 eq./ton PS was detected caused by the automatic temperature increase (≥35 °C). The pH of acidified PS did not exceed 6.5 during the whole storage period, while it was maintained 7.3-7.7 in the control. A continuous AD reactor fed with acidified PS exhibited a higher CH4 yield of 10.0 m3 CH4/ton PS, compared to the control (5.7 m3 CH4/ton PS), due to the preservation of organic matters and added CA. In overall, about 8.5 [(4.4, storage) + (4.1, biogas)] kg of CH4/ton PS was generated from raw PS and it was reduced to 7.8 [(0.7, storage) + (7.1, biogas)] kg of CH4/ton PS by CA-acidification. Despite the carbon footprint for manufacturing CA, it was calculated that GHG reduction of 107 kg CO2 eq./ton PS could be attained by CA-acidification. In terms of economic profit, it was estimated that 6.3 USD/ton PS can be gained by CA-acidification, while it was 2.4 USD/ton PS in case of control.


Assuntos
Biocombustíveis , Gases de Efeito Estufa , Animais , Ácido Cítrico , Esterco/análise , Metano/análise , Suínos
20.
Waste Manag Res ; 39(7): 947-955, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33280536

RESUMO

The increasing concentration of livestock farms results in large amounts of waste production and the need for their management. The study of anaerobic digestion (AD) technology, under mesophilic conditions, applied to pig slurry is of the upmost importance for biogas recovery and sanitised digestate, contributing to a circular economy. The assessment of the effects of a feast/famine regime on biogas and biomethane (bio-CH4) yield with different feeding frequencies was performed. The evaluation was made in regards to three scenarios: the first is based on daily feeding (FR1); in the second, the feeding occurs once every two days (FR2); and in the third, the feeding happens once every three days (FR3). The results demonstrate that the biogas and methane yield increased by 34% and 37% between FR1 and FR3. The stability inside the reactor was maintained since specific loading energetic rate values did not exceed the recommended limit (0.4 d-1). It was also possible to conclude that the AD technology was efficient to sanitise the pig slurry, with the count of Escherichia coli going from 1 × 105 colony-forming units (CFU) g-1 to less than 100 CFU g-1, meeting the legal requirements for agricultural valorisation. The total anaerobic mesophile plate counts were significantly (p < 0.1) reduced from feeding to digestate, and the plate counts of Clostridia were significantly (p < 0.05) increased, reflecting the changes in the composition of the microbiota. The increasing yield in bio-CH4 in accordance with Clostridium counts suggests this genus as a positive microbiological key indicator of the AD performance.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Animais , Biocombustíveis , Esterco , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...