Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Ecology ; : e4322, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014865

RESUMO

Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.

2.
Huan Jing Ke Xue ; 45(7): 4177-4186, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022964

RESUMO

Changes in soil organic carbon (SOC) are of great importance to the evolution of soil quality. The distribution characteristics of soil organic carbon (SOC), easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were investigated in the 0-50 cm soil layer of the Phragmites australis, Suaeda salsa, and Tamarix chinensis communities of the supratidal zone in the Yellow River Delta as the research subjects. Then, the composition and sources of soil dissolved organic matter (DOM) were analyzed based on the UV-vis spectroscopy, three-dimensional excitation emission matrix spectroscopy, and parallel factor analysis (PARAFAC). Finally, the key factors affecting the characteristics of soil organic carbon and DOM fractions of different plant communities were finally revealed in combination with the physicochemical properties of the soil. The results showed that: ① Comparing different communities, the S. salsa community had the highest ω(SOC) at 7.53 g·kg-1, the T. chinensis community had the highest ω(DOC) at 0.98 g·kg-1, and the P. australis community had significantly higher ω(EOC) and ω(POC) than those of the S. salsa and T. chinensis communities at 1.47 g·kg-1 and 0.65 g·kg-1, respectively. The vertical distribution showed a tendency to decrease with deeper soil layers, except for POC concentration. ② The main components of soil DOM of the P. australis, S. salsa, and T. chinensis communities were humus, protein-like substances, and fulvic acid-like substances, of which exogenous components accounted for 55.80%, 56.41%, and 52.81% in the above communities, respectively. ③ Comparing different communities, the humification degree of the P. australis community was significantly higher than that of the S. salsa and T. chinensi communities, but its aromaticity and proportion of biological sources were significantly lower than those of the T. chinensi community. On the vertical profile of the soil, DOM aromaticity and humification degree gradually increased with the deepening of the soil layer, and the deeper soils were mainly dominated by small molecular weight DOM with a lower proportion of hydrophobic fraction. ④ Redundant analysis showed that N (P<0.01), NO2--N (P<0.01), and NH4+-N (P<0.05) were the key factors affecting the changes in soil organic carbon and DOM fractions.


Assuntos
Carbono , Chenopodiaceae , Compostos Orgânicos , Rios , Solo , Solo/química , Carbono/análise , China , Compostos Orgânicos/análise , Rios/química , Chenopodiaceae/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Tamaricaceae/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental
3.
Sci Rep ; 14(1): 16920, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043704

RESUMO

The distribution and composition of the vegetation are greatly affected by the edaphology and topography of an area. The current study explores the vegetation structure of the herbaceous layer at various habitats of district Kohat for the first time. A survey was conducted during the spring seasons of 2021, 2022 and 2023 selecting 40 sites on the basis of edaphology, topography, altitude, aspect and status. Data was collected via quadrat approach to establish plant communities by species Importance Value (IV), point out dominant species by Total IV (TIV) and dominant families via Total Family IV (TFIV). The quantitative biological spectrum was also calculated. Communities' phytosociological characteristics were analyzed via various diversity indices (Shannon's Index (H), Simpson's Index (D), Species Richness (SR), Evenness (E) and Maturity index (Mi)) while similarity between the communities was calculated by using Sorensen's Index. The findings revealed a total of 253 species belonging to 57 families having the dominant species Cynodon dactylon (L.) Pers. (TIV, 484.3) followed by Saussuria heteromalla (D. Don) Hand. (TIV, 360.4), Anagallis arvensis L. (TIV, 353.2) and Aristida adscensionis L. (TIV, 349.65). Among 40 plant communities, Poaceae (TFIV, 2706.6), Asteraceae (TFIV, 2018.8), Fabaceae (TFIV, 1071.5) and Brassicaceae (TFIV, 825.9) were the dominant families. Therophytes (TIV, 7882) class was the dominant life form class followed by hemicryptophytes (TIV, 2517) while microphylls (TIV, 4669) class was the dominant leaf size class followed by nanophylls (TIV, 5469). Environmental factors i.e. topography and edaphic characteristics, showed significant effects on the diversity of the communities. The study concludes in a diverse pattern of distribution with a rich flora in the area warranting its documentation which will preserve the valuable species opening vistas for future research.


Assuntos
Biodiversidade , Ecossistema , Estações do Ano , Plantas , Índia
4.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1016-1024, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884236

RESUMO

In this study, we explored the changes in plant community diversity and their relationship with soil factors under shrub encroachment pressure by selecting four marsh areas in Sanjiang Plain with different degrees of shrub cover (a, 0≤a≤100%), including marsh with no shrub encroachment (a=0), light shrub encroachment (0

Assuntos
Biodiversidade , Solo , Áreas Alagadas , China , Solo/química , Dinâmica Populacional , Poaceae/crescimento & desenvolvimento , Plantas/classificação , Desenvolvimento Vegetal
5.
Front Plant Sci ; 15: 1419345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919819

RESUMO

Introduction: Northeast China Tiger and Leopard National Park is home to the largest and only breeding family of wild tigers and leopards in China. The mining of open-pit gold and copper mines in the core zone might affect the surrounding forest ecosystem and the survival activities of wild tigers and leopards. Methods: In order to understand the impacts of gold and copper mining on the structure and diversities of the surrounding plant communities, the vegetation of the forest layer, shrub layer and herb layer of the forest community in the original forest area, mining area, tailings area and restoration area of the Northeast China Tiger and Leopard National Park were investigated, and the influence of plant community structure on species diversity was also evaluated. Results: This study concluded that there are 25 species belonging to 11 families, 16 genera of trees, 43 species belonging to 22 families, 35 genera of shrubs, and 57 species belonging to 23 families, 46 genera of herb in the sampling sites. There were no significant differences in the community structure characteristics and species diversities of the tree layer and the shrub layer in different operational areas. However, in herb layer, the heights, the coverage and the species diversity index were higher in the restoration area. Additionally, the community structure was one of the major factors that influence the diversity indices, which might be an important way for mining to impact plant diversity. Discussion: Therefore, mining had some impacts on the structure and diversity of the surrounding plant communities, but the impacts did not reach a significant level. These results could provide scientific support for the management of the forest ecosystems around the mining area of Northeast Tiger and Leopard Park.

6.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732411

RESUMO

Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon-Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes.

7.
Front Plant Sci ; 15: 1347658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817931

RESUMO

Biochar is a widely proposed solution for improving degraded soil in coastal wetland ecosystems. However, the impacts of biochar addition on the soil and plant communities in the wetland remains largely unknown. In this study, we conducted a greenhouse experiment using soil seed bank from a coastal saline-alkaline wetland. Three types of biochar, including Juglans regia biochar (JBC), Spartina alterniflora biochar (SBC) and Flaveria bidentis biochar (FBC), were added to the saline-alkaline soil at ratios of 1%, 3% and 5% (w/w). Our findings revealed that biochar addition significantly increased soil pH, and increased available potassium (AK) by 3.74% - 170.91%, while reduced soil salinity (expect for 3% SBC and 5%SBC) by 28.08% - 46.93%. Among the different biochar types, the application of 5% FBC was found to be the most effective in increasing nutrients and reducing salinity. Furthermore, biochar addition generally resulted in a decrease of 7.27% - 90.94% in species abundance, 17.26% - 61.21% in community height, 12.28% - 56.42% in stem diameter, 55.34% - 90.11% in total biomass and 29.22% - 78.55% in root tissue density (RTD). In particular, such negative effects was the worst in the SBC samples. However, 3% and 5% SBC increased specific root length (SRL) by 177.89% and 265.65%, and specific root surface area (SRSA) by 477.02% and 286.57%, respectively. The findings suggested that the plant community performance was primarily affected by soil pH, salinity and nutrients levels. Furthermore, biochar addition also influenced species diversity and functional diversity, ultimately affecting ecosystem stability. Therefore, it is important to consider the negative findings indirectly indicate the ecological risks associated with biochar addition in coastal salt-alkaline soils. Furthermore, Spartina alterniflora was needed to desalt before carbonization to prevent soil salinization when using S. alterniflora biochar, as it is a halophyte.

8.
Ecol Appl ; 34(5): e2972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751157

RESUMO

Understanding fire and large herbivore interactions in interior western forests is critical, owing to the extensive and widespread co-occurrence of these two disturbance types and multiple present and future implications for forest resilience, conservation and restoration. However, manipulative studies focused on interactions and outcomes associated with these two disturbances are rare in forested rangelands. We investigated understory vegetation response to 5-year spring and fall prescribed fire and domestic cattle grazing exclusion in ponderosa pine stands and reported long-term responses, almost two decades after the first entry fires. In fall burn areas open to cattle grazing, total understory cover prior to utilization was about 12% lower compared with fall burn areas where cattle were experimentally excluded. This response was not strongly driven by a particular palatable or unpalatable plant functional group. Fire and grazing are likely interacting in a numerically mediated process, as we found little evidence to support a functionally moderated pathway. Post-fire green-up may equalize forage to a certain extent and concentrate herbivores in the smaller burned areas within pastures, constraining a positive understory response to burning. Fall fire and grazing also increased annual forbs and resprouting shrubs. The effects of spring burning were relatively minor, and we found no interaction with grazing. The nonnative annual grass Bromus tectorum (cheatgrass) remains a problematic invader linked to fall burning but not grazing in stands that had higher propagule pressure when the experiment was initiated. At these sites, exotic grass was a major component of the vegetation by 2015, and invasion was also increasing in spring burn and unburned areas. Information from our study suggests that frequent fall fires and cattle grazing combined may reduce understory resilience in similar dry ponderosa pine forests. Consideration of longer fire return intervals, resting areas after fire, virtual fencing, or burning entire pastures may help to mitigate the effects noted in this study.


Assuntos
Incêndios , Florestas , Herbivoria , Animais , Bovinos/fisiologia , Estações do Ano , Fatores de Tempo
9.
Ecol Appl ; 34(5): e2984, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753679

RESUMO

Seed rain and the soil seed bank represent the dispersal of seeds in space and time, respectively, and can be important sources of recruitment of new individuals during plant community regeneration. However, the temporal dynamics of seed rain and the mechanisms by which the seed rain and soil seed bank may play a role in plant community regeneration with increased grazing disturbance remain unclear. Seed rain, soil seed bank, aboveground vegetation, and rodent density were sampled along a grazing gradient in an alpine marsh on the eastern Tibetan Plateau. We described the temporal dynamics of seed dispersal using Bayesian generalized mixed models, and nonmetric multidimensional scaling and the structural equation model were used to examine the effects of grazing disturbance on the relative role of seed rain and soil seed bank on aboveground plant community regeneration. The temporal dynamics of seed rain changed from a unimodal to a bimodal pattern with increased grazing disturbance. Both species diversity and seed density of the seed rain and seed bank increased significantly with increased grazing disturbance. Increased grazing disturbance indirectly increased the similarity of composition between seed rain, seed bank, and aboveground plant community by directly increasing species diversity and abundance of aboveground plant community. However, increased grazing disturbance also indirectly decreased the similarity of seed rain, soil seed bank, and aboveground plant community by directly increasing rodent density. The similarity between seed rain and aboveground plant community was greater than that of the soil seed bank and aboveground plant community with increased grazing disturbance. Grazing disturbance spreads the risk of seed germination and seedling establishment by changing the temporal dynamics of seed dispersal. Plants (positive) and rodents (negative) mediated the role of seed rain and soil seed bank in plant community regeneration. The role of seed rain in plant community regeneration is higher than the seed bank in disturbed alpine marshes. Our findings increase our understanding of the regeneration process of the plant community, and they provide valuable information for the conservation and restoration of alpine marsh ecosystems.


Assuntos
Herbivoria , Roedores , Sementes , Animais , Roedores/fisiologia , Sementes/fisiologia , Banco de Sementes , Plantas/classificação , Tibet , Dispersão de Sementes
10.
Front Psychol ; 15: 1425682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813555

RESUMO

[This corrects the article DOI: 10.3389/fpsyg.2024.1285792.].

11.
Ecology ; 105(6): e4312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666421

RESUMO

An increasing number of studies of above-belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: 'Are soil microorganisms driving plant community functioning or do they adapt to the plant community?' In a field experiment in an early successional dune ecosystem, we manipulated soil communities by adding living (i.e., natural microbial communities) and sterile soil inocula, originating from natural ecosystems, and examined the annual responses of soil and plant communities. The experimental manipulations had a persistent effect on the soil microbial community with divergent impacts for living and sterile soil inocula. The plant community was also affected by soil inoculation, but there was no difference between the impacts of living and sterile inocula. We also observed an increasing convergence of plant and soil microbial composition over time. Our results show that alterations in soil abiotic and biotic conditions have long-term effects on the composition of both plant and soil microbial communities. Importantly, our study provides direct evidence that soil microorganisms are not "drivers" of plant community dynamics. We found that soil fungi and bacteria manifest different community assemblies in response to treatments. Soil fungi act as "passengers," that is, soil microorganisms reflect plant community dynamics but do not alter it, whereas soil bacteria are neither "drivers" nor "passengers" of plant community dynamics in early successional ecosystems. These results are critical for understanding the community assembly of plant and soil microbial communities under natural conditions and are directly relevant for ecosystem management and restoration.


Assuntos
Bactérias , Ecossistema , Fungos , Plantas , Microbiologia do Solo , Fungos/fisiologia , Bactérias/classificação , Plantas/microbiologia
12.
Front Plant Sci ; 15: 1348182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571712

RESUMO

Pollen analysis, a crucial tool in botany and ecology for examining historical biotic dynamics, has elicited debate owing to its complex link with vegetation. The challenge lies in discerning the ecological significance of pollen data. In this study, we conducted detailed quadrat surveys on Jinhua Mountain, subtropical China, analyzing topsoil pollen to determine whether pollen signals accurately reflect key ecological components in the forests and shrublands. We performed direct comparisons between pollen and plant compositions and calculated pollen percentages and plant Important Values (IVs) for each quadrat. The results indicate greater homogeneity in pollen composition across the study area compared to plant composition, particularly in the high percentage of Pinus pollen. However, distinct plant communities exhibited significantly different pollen compositions, as evidenced by the multi-response permutation test. This divergence aligns with variations in the dominant plant species across different communities. There were significant correlations between pollen percentages and plant IVs, with correlation coefficients of 0.55 (p < 0.001) at the quadrat level and 0.78 (p < 0.001) at the taxon level. These results support the utility of pollen analysis for representing ecologically significant values in subtropical Chinese forests and shrublands. Such correlations might also be extrapolated to pollen-based paleoecological studies.

13.
J Environ Manage ; 357: 120776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579468

RESUMO

Hydro-Fluctuation Belt (HFB), a periodically exposed bank area formed by changes in water level fluctuations, is critical for damaging the reservoir wetland landscape and ecological balance. Thus, it is important to explore the mechanism of hydrological conditions on the plant-soil system of the HFB for protection of the reservoir wetland and landscape restoration. Here, we investigated the response of plant community characteristics and soil environment of the HFB of Tonghui River National Wetland Park (China), is a typical reservoir wetland, to the duration of inundation, as well as the correlation between the distribution of dominant plants and soil pH, nutrient contents, and enzyme activity by linear regression and canonical correlation analyses. The results show that as the duration of inundation decreases, the vegetation within the HFB is successional from annual or biennial herbs to perennial herbs and shrubs, with dominant plant species prominent and uneven distribution of species. Soil nutrient contents and enzyme activities of HFB decreased with increasing inundation duration. Dominant species of HFB plant community are related to soil environment, with water content, pH, urease, and available potassium being principle soil environmental factors affecting their distribution. When HFB was inundated for 0-30 days, soil pH was strongly acidic, with available potassium content above 150 mg kg-1 and higher urease activity, distributed with Arundo donax L., Polygonum perfoliatum L., Alternanthera philoxeroides (Mart.) Griseb., and Daucus carota L. communities. When inundated for 30-80 days, soil pH was acidic, with lower available potassium content (50-150 mg kg-1) and urease activity, distributed with Beckmannia syzigachne (Steud.) Fern.+ Polygonum lapathifolium L., Polygonum lapathifolium L., Medicago lupulina L. + Dysphania ambrosioides L. and Leptochloa panicea (Retz.) Ohwi communities. Using the constructed HFB plant-soil correlation model, changes in the wetland soil environment can be quickly judged by the succession of plant dominant species, which provides a simpler method for the monitoring of the soil environment in the reservoir wetland, and is of great significance for the scientific management and reasonable protection of the reservoir-type wetland ecosystem.


Assuntos
Ecossistema , Áreas Alagadas , Solo/química , Urease , Plantas , Água , Poaceae , China , Potássio
15.
Environ Res ; 251(Pt 1): 118572, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437902

RESUMO

The presence of nanoplastics posed a potential threat to coastal saline-alkaline wetlands where nitrogen (N) fertilizer is being implemented as an important ecological restoration measure. Notwithstanding, the effects of N inputs on plant community in polypropylene-nanoplastics (PP-NPs) coexistence environments are largely unknown. To address this, we investigated the effects of PP-NPs addition alone or combined N supply on community aboveground biomass, morphological traits, diversity, composition, niche differentiation, interspecific interactions, and assembly. Our results showed that the PP-NPs addition alone reduced community aboveground biomass and morphological traits. However, the addition of high concentration (0.5%) PP-NPs alone favored community α-diversity and reduced community stability, which could be weakened through combined N supply. Overall, the effect of PP-NPs addition alone on plant community composition was greater than that of combined N supply. We also demonstrated PP-NPs addition alone and combined N supply reduced the niche breadth of the plant community and affected the niche overlap of dominant species. In the assembly of plant communities, stochastic processes played a dominant role. We conclude that N fertilization can amend the terrestrial nanoplastics pollution, thus mitigating the effects of PP-NPs on the plant community.


Assuntos
Nitrogênio , Plantas , Áreas Alagadas , Plantas/efeitos dos fármacos , Fertilizantes/análise , Biomassa , Polipropilenos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Biodiversidade
16.
Ying Yong Sheng Tai Xue Bao ; 35(1): 41-48, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511438

RESUMO

Understanding plant communities in desertification area is the scientific basis of evaluating the local eco-environmental quality and carrying out desertification control. According to longitude, we divided the desertification area in northwest Liaoning Province into three regions: the eastern region (122°50'37″ -123°49'40″ E), the middle region (121°16'41″-122°35'00″ E), and the western region (119°20'03″ -120°02'41″ E), and investigated the plant communities in each region. The results showed that the proportion of forest and canopy density of tree layer increased from the west to the east. Ass. Pinus sylvestris var. mongolica and Ass. Populus sp. in the eastern, Ass. Pinus tabuliformis and Ass. Populus sp. in the middle, as well as Ass. P. tabuliformis and Ass. Prunus sibirica in the western were dominant communities, respectively. The proportion of brush community in the eastern, middle and western was 0, 22.2%, and 28.0%, respectively. Grasslands formed mainly by human disturbance in the eas-tern and middle regions. The total species numbers were 110 in the middle, 88 in the western and 75 in the eastern, respectively. Therophytes were dominant in the eastern and middle with proportions of 68.2% and 66.7%, respectively. Hemicryptophytes were the dominant type (36.3%) in the western region. The proportion of microphanerophyt, nanophanerophyte, chamaephyte, and geophyte increased from the eastern to the western. The species number, Shannon index, and Simpson diversity index of the middle were the highest among the three regions. Pielou evenness index increased gradually from the eastern to the western. Community similarity between the eastern and the western was the lowest, as shown by the ß-biodiversity, and the similarity between the middle and the western was the highest. The community type, species number, characteristics of species composition and species biodiversity of the middle region had the characteristics of ecological transition zone. In general, vegetation status in the desertification area of northwest Liaoning Province was in good condition. There were still some problems including the monotonous vertical structure of forest and tree species as well as the serious human interference.


Assuntos
Conservação dos Recursos Naturais , Florestas , Humanos , Biodiversidade , Plantas , Árvores , China
17.
New Phytol ; 242(3): 1018-1028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436203

RESUMO

Biodiversity world-wide has been under increasing anthropogenic pressure in the past century. The long-term response of biotic communities has been tackled primarily by focusing on species richness, community composition and functionality. Equally important are shifts between entire communities and habitat types, which remain an unexplored level of biodiversity change. We have resurveyed > 2000 vegetation plots in temperate forests in central Europe to capture changes over an average of five decades. The plots were assigned to eight broad forest habitat types using an algorithmic classification system. We analysed transitions between the habitat types and interpreted the trend in terms of changes in environmental conditions. We identified a directional shift along the combined gradients of canopy openness and soil nutrients. Nutrient-poor open-canopy forest habitats have declined strongly in favour of fertile closed-canopy habitats. However, the shift was not uniform across the whole gradients. We conclude that the shifts in habitat types represent a century-long successional trend with significant consequences for forest biodiversity. Open forest habitats should be urgently targeted for plant diversity restoration through the implementation of active management. The approach presented here can be applied to other habitat types and at different spatio-temporal scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Plantas , Biota
18.
Sci Rep ; 14(1): 5600, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454088

RESUMO

Research has demonstrated the positive effect of natural environment on human restoration and well-being. Time spent in nature can often alleviate both physiological and psychological stress. However, few studies have discussed the environmental health effects of the nature's components and characteristics. Sixty volunteers were recruited and one manufactured environment and five different natural environments were randomly assigned to them, including coniferous forests (pure coniferous forest-PC and mixed coniferous forest-MC), broad-leaved forests (pure broad-leaved forest-PB and mixed broad-leaved forest-MB), and mixed forest (mixed coniferous and broad-leaved forest-MCB). Each volunteer sat in a built or natural environment and looked around the environment for 15 min. Physiological (HR, HRV, BP, pulse rate and salivary cortisol) and psychological indicators (POMS and STAI) were used to evaluate the changes in their stress level. Results indicated a strong difference in HR, HRV, POMS and STAI between the built and natural environment, which showed that natural environment can lower the stress level. MC had the best effect on relieving physiological stress, whereas MCB is most successful in improving emotional state and reducing anxiety. Broad-leaved forest and mixed forest significantly affected the DBP and vigor level of the subjects, respectively. While coniferous forest did significantly increase the concentration of salivary cortisol in subjects. The study confirmed that compared to the built environment, the natural environment can relieve the human body's physical and psychological stress and negative emotions, while significantly increasing vitality. And different plant communities also have different effects on the physiological and psychological indicators of the subjects. These results will provide scientific basis for the construction and improvement of urban green space environment.


Assuntos
Hidrocortisona , Traqueófitas , Humanos , Ansiedade , China , Emoções , Florestas , Árvores , Distribuição Aleatória
19.
Ecol Lett ; 27(2): e14391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400769

RESUMO

Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2 , across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favour warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.


Assuntos
Ecossistema , Plantas , Mudança Climática , Madeira , Temperatura
20.
Glob Chang Biol ; 30(2): e17149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342970

RESUMO

Piñon-juniper (PJ) woodlands are a dominant community type across the Intermountain West, comprising over a million acres and experiencing critical effects from increasing wildfire. Large PJ mortality and regeneration failure after catastrophic wildfire have elevated concerns about the long-term viability of PJ woodlands. Thinning is increasingly used to safeguard forests from fire and in an attempt to increase climate resilience. We have only a limited understanding of how fire and thinning will affect the structure and function of PJ ecosystems. Here, we examined vegetation structure, microclimate conditions, and PJ regeneration dynamics following ~20 years post-fire and thinning treatments. We found that burned areas had undergone a state shift that did not show signs of returning to their previous state. This shift was characterized by (1) distinct plant community composition dominated by grasses; (2) a lack of PJ recruitment; (3) a decrease in the sizes of interspaces in between plants; (4) lower abundance of late successional biological soil crusts; (5) lower mean and minimum daily soil moisture values; (6) lower minimum daily vapor pressure deficit; and (7) higher photosynthetically active radiation. Thinning created distinct plant communities and served as an intermediate between intact and burned communities. More intensive thinning decreased PJ recruitment and late successional biocrust cover. Our results indicate that fire has the potential to create drier and more stressful microsite conditions, and that, in the absence of active management following fire, there may be shifts to persistent ecological states dominated by grasses. Additionally, more intensive thinning had a larger impact on community structure and recruitment than less intensive thinning, suggesting that careful consideration of goals could help avoid unintended consequences. While our results indicate the vulnerability of PJ ecosystems to fire, they also highlight management actions that could be adapted to create conditions that promote PJ re-establishment.


Assuntos
Incêndios , Juniperus , Pinus , Ecossistema , Florestas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...