Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fitoterapia ; 173: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286315

RESUMO

Citrisorbicillinol (1), along with six other known compounds (2-7), was isolated from an endphyte Penicillium citrinum ZY-2 of Plantago asiatica L. Citrisorbicillinol (1) was characterized as a skeletally unprecedented hybrid sorbicillinoid, and its unique framework is likely formed by intermolecular [4 + 2] cycloaddition between intermediates derived from citrinin and sorbicillinoid biosynthetic gene clusters. Compounds 1 and 2 demonstrated to promote osteoblastic differentiation in MC3T3-E1 cells, and to be osteogenic in the prednisolone induced osteoporotic zebrafish. Compounds 3-7 exhibited moderate cytotoxicity against four human cancer cell lines.


Assuntos
Citrinina , Penicillium , Animais , Humanos , Estrutura Molecular , Peixe-Zebra
2.
Phytochem Anal ; 35(3): 586-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263361

RESUMO

INTRODUCTION: The seeds of Plantago asiatica L., a folk herb, are rich in polysaccharides that possess antioxidant, antidiabetic, and anti-inflammatory properties. Polysaccharides with lower molecular weights generally exhibit higher biological activity, so a method to efficiently extract low-molecular-weight polysaccharides from P. asiatica L. seeds (PLPs) is needed. OBJECTIVES: The aim was to establish an efficient method for extracting polysaccharides from P. asiatica L. seeds while preserving their activity. MATERIALS AND METHODS: Response surface methodology was applied to determine the optimal polysaccharide extraction conditions. Subsequently, the extracted polysaccharides were characterized to determine their monosaccharide composition, physicochemical properties, and molecular weight. Their antioxidant activity was evaluated by measuring their ability to scavenge DPPH and ABTS free radicals. RESULTS: An extraction yield of 9.17% was achieved under an ethanol concentration of 18.0% (w/w), a K2HPO4 concentration of 27.8% (w/w), a solvent-to-material ratio of 30:1 (mL/g), an ultrasound power of 203 W, and an extraction time of 39 min. Structural analyses indicated that this method might cause physicochemical changes in the conformation of PLPs and induce the degradation of PLP side chains but not the backbone. The antioxidant assay results showed that the DPPH and ABTS radical scavenging rates of PLPs were 48.3% and 49.2%, respectively, while in the control group the radical scavenging rates were 35.5% and 37.1%, respectively. CONCLUSION: The established method for extracting polysaccharides from P. asiatica L. seeds is efficient and reliable. The polysaccharides could be used as an important resource with antioxidant activity.


Assuntos
Antioxidantes , Benzotiazóis , Plantago , Ácidos Sulfônicos , Antioxidantes/química , Etanol , Plantago/química , Plantago/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Sementes/química
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256226

RESUMO

Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.


Assuntos
Gota , Indóis , Plantago , Polímeros , Humanos , Sílica Gel , Dióxido de Silício , Membrana Celular , Proteínas de Membrana , Rim , Cromatografia , Excipientes
4.
Int J Biol Macromol ; 258(Pt 2): 128990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158057

RESUMO

Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.


Assuntos
Plantago , Plantago/química , Antioxidantes/farmacologia , Polissacarídeos/química , Extratos Vegetais/farmacologia , Ásia Oriental
5.
J Cosmet Dermatol ; 22(8): 2324-2332, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36999450

RESUMO

BACKGROUND: The hair growth cycle consists of the anagen, catagen, and telogen phases, and hair follicle dermal papilla (HDP) cells of human hair play a role in the initiation and maintenance of the anagen phase. Reduction in HDP cells contributes to hair loss; however, the limited treatment options are associated with negative side effects. Therefore, a naturally derived substance with hair loss-preventing properties is needed. AIM: We investigated the hair growth-stimulating activities of Plantago asiatica L. extract (PAE) and its molecular mechanism in HDP cells. METHODS: Cell proliferation was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide solution. Relative mRNA and protein expression levels of hair growth factors were determined using quantitative real-time polymerase chain reaction and western blotting, respectively. Additionally, a tube formation assay was performed in human umbilical vein endothelial cells (HUVEC). RESULTS: Plantago asiatica L. extract significantly increased the cell proliferation and expression of hair growth factors, including keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2) and MYC, in HDP cells. Moreover, PAE led to the accumulation of ß-catenin by promoting the phosphorylation of glycogen synthase kinase-3 beta (GSK-3ß) at Ser9 and cAMP response element-binding protein (CREB) at Ser133 via phosphorylation of extracellular signal-regulated kinase (ERK) (Thr202/Tyr204). PAE also increased tube formation in HUVECs, which promoted angiogenesis for the anagen phase. CONCLUSIONS: Plantago asiatica L. extract amplified tube formation and production of growth factors (KGF, VEGF) via the activation of GSK-3ß/ß-catenin and mitogen-activated protein kinase (MAPK)/CREB signaling pathways, demonstrating its potential to safely promote hair growth by inducing the anagen phase.


Assuntos
Folículo Piloso , Plantago , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo , Plantago/metabolismo , Células Endoteliais , Proliferação de Células , Alopecia/metabolismo , Células Cultivadas
6.
J Pharm Biomed Anal ; 227: 115234, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773541

RESUMO

The combined efficacy in lowering serum lipid levels and increasing kidney protection of Plantago asiatica L. seed (Plantago) and Coptis chinensis Franch. rhizoma (Coptis) is far better than the effects of either herb alone. This finding suggests that there must be some degree of herb-herb interactions (HHI) affect potency. Here, we chose geniposidic acid (GPA), acteoside (ACT), and plantagoamidinic acid A (PLA) as active components in Plantago, and berberine (BBR) as the active component in Coptis, and, using transporter gene-transfected Madin-Darby canine kidney (MDCK) cells in combination with specific substrates and inhibitors, investigated Plantago- Coptis HHIs. We also established a UPLC-MS/MS analytical method to determine substrate content. Results showed that PLA in Plantago was a substrate of rOCT1/2 and rMATE1, and had inhibitory effects on rOCT2 and rMATE1. We also found that ACT is a substrate of rMATE1, but GPA was not a substrate of any transporter that we investigated. When BBR was used as the substrate, the inhibition rate of 10 µM PLA was 53.6% on rOCT2 and 31.5% on rMATE1. The inhibition rates of 30 µM ACT and 30 µM GPA on rMATE1 were 47.0% and 31.0%, respectively. Thus, our findings suggest that GPA, ACT, PLA, and BBR have competitive interactions that are driven by the rOCT2 and rMATE1 transporters. These interactions affect the transport and excretion of compounds and result in efficacy changes after co-administration.


Assuntos
Coptis , Plantago , Animais , Cães , Espectrometria de Massas em Tandem/métodos , Coptis chinensis , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Proteínas de Transporte de Cátions Orgânicos , Coptis/química , Sementes , Poliésteres
7.
Prep Biochem Biotechnol ; 53(8): 978-987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36719813

RESUMO

In this paper, the total phenylethanosides (TPS) were extracted efficiently by an innovative extraction technology--deep eutectic solvent-based ultrasound-assisted extraction (DES-UAE) from Plantago asiatica L. Ten diverse types of DESs were synthesized as alternative extraction solutions. The extraction efficiency of DES-3 (constituted by choline chloride and lactic acid) was much higher than those of other DESs. On the basis of single factor tests and Box-Behnken design (BBD), the optimum processing parameters of DES-UAE as follow: DES-3 with molar ratio of 1:3, extraction temperature 51 °C, solid/liquid 22.5 mg/ml, water content 30%, ultrasonic power 65 W, extraction time 23 min. The extraction efficiency of TPS from Plantago asiatica L. was 8.395 mg/ml, which was more superior than those of organic solvents (water, methanol, 50% methanol, ethanol, 50% ethanol). The extraction kinetics experiment results showed that water content had a significant influence upon the extraction efficiency of TPS. At the same time, AB-8 macroporous resin column was used to efficiently isolate TPS from DES extraction with a recovery rate of 88.5%.


Assuntos
Flavonoides , Plantago , Solventes , Solventes Eutéticos Profundos , Metanol , Cinética , Água , Tecnologia , Etanol , Extratos Vegetais
8.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807548

RESUMO

Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS), and ultra-high performance liquid chromatography-mass spectrometry with ion-mobility spectrometry (UHPLC-IM-MS) was established and used to separate and identify the structures of compounds from PAL. The extracts of PAL were firstly separated into three parts by AB-8 macroporous resin and further separated and identified by UHPLC-Q-TOF MS and UHPLC-IM-MS, respectively. Additionally, UHPLC-IM-MS was used to identify isomers and coeluting compounds, so that the product ions appearing at the same retention time (RT)can clearly distinguish where the parent ion belongs by their different drift times. UNIFI software was used for data processing and structure identification. A total of 86 compounds, including triterpenes, iridoids, phenylethanoid glycosides, guanidine derivatives, organic acids, and fatty acids, were identified by using MS information and fragment ion information provided by UHPLC-Q-TOF MS and UHPLC-IM-MS. In particular, a pair of isoforms of plantagoside from PAL were detected and identified by UHPLC-IM-MS combined with the theoretical calculation method for the first time. In conclusion, the AB-8 macroporous resin column chromatography can separate the main compounds of PAL and enrich the trace compounds. Combining UHPLC-IM-MS and UHPLC-Q-TOF MS can obtain not only more fragments but also their unique drift times and RT, which is more conducive to the identification of complex systems, especially isomers. This proposed strategy can provide an effective method to separate and identify chemical components, and distinguish isomers in the complex system of traditional Chinese medicine (TCM).


Assuntos
Medicamentos de Ervas Chinesas , Plantago , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Espectrometria de Mobilidade Iônica , Espectrometria de Massas/métodos
9.
Phytochem Anal ; 33(1): 94-104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34137102

RESUMO

INTRODUCTION: In the present study, ternary deep eutectic solvent-based ultrasound-assisted extraction was developed for the efficient extraction of plantamajoside, acteoside, quercetin and kaempferol from Plantago asiatica L. METHODOLOGY: Six kinds of choline chloride-based ternary deep eutectic solvents (TDESs) were prepared as potential extraction solutions. In order to obtain optimal extraction efficiency, a series of extraction conditions were investigated by single-factor test and orthogonal test. RESULTS: The extraction efficiency of choline chloride/lactic acid/ethylene glycol (ChCl-LA-EG) was much higher than that of other TDESs. ChCl-LA-EG-11 synthesised with choline chloride, lactic acid and ethylene glycol (1:4:2) was considered to have a higher extraction efficiency. The optimal ultrasound-assisted extraction conditions were as follows: water content in ChCl-LA-EG-11, 50%; extraction temperature, 70°C; ratio of solid/liquid, 20 mg/mL; ultrasonic power, 60 W; extraction time, 35 min; pH of the solution, 8. Under the optimal extraction conditions, the extraction efficiencies of plantamajoside, acteoside, quercetin and kaempferol were 3.83 ± 0.41, 4.23 ± 0.45, 0.56 ± 0.15 and 0.19 ± 0.08 mg/g, respectively. The extraction efficiency of the total target components was 9.21 ± 0.63 mg/g, which was much higher than that of conventional solvents (water, methanol, ethanol, 50% methanol, 50% ethanol). The target components were isolated efficiently from the TDES solution by an AB-8 macroporous resin column with a recovery rate of 95.6%. CONCLUSION: This study demonstrated that TDESs possessed excellent physical and chemical properties and had enormous potential for active component extraction of traditional Chinese medicinal materials.


Assuntos
Plantago , Quercetina , Catecóis , Solventes Eutéticos Profundos , Glucosídeos , Quempferóis , Fenóis , Solventes
10.
Front Pharmacol ; 12: 678865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504423

RESUMO

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes' proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.

11.
Phytomedicine ; 91: 153681, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34371252

RESUMO

BACKGROUND: Cardiac hypertrophy is the early stage of many heart diseases, such as coronary heart disease, hypertension, valvular dysfunction and cardiomyopathy. Cardiomyocyte autophagy and apoptosis play an important role in the process of cardiac hypertrophic response. Plantago asiatica L. seeds extract (PASE) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PASE could relieve cardiac hypertrophy has not been elucidated. The present study is aimed to investigate the effect of PASE on cardiac hypertrophy and explore its potential underlying mechanism. METHODS: Cardiac hypertrophy was induced in C57BL/6 mice by subcutaneous injection of isoproterenol (ISO) for two weeks. Meanwhile, the mice were intraperitoneally injected with PASE at dosages of 20, 40 and 80 mg/kg/day. Cardiac hypertrophy was evaluated by echocardiographic examination, haematoxylin and eosin staining and quantitative real-time polymerase chain reaction. Expressions of proteins involved in autophagy and apoptosis such as Beclin1, p62, LC3II, Bax, Bcl-2 and Cleaved-caspase-3 were detected by western blot analysis. Western blot, transient transfection, acridine orange staining, TUNEL staining and autophagy inducer were used to observe the effect and explore the mechanism of PASE on cardiomyocyte and H9c2 cells with excessive autophagy and apoptosis induced by ISO. RESULTS: ISO induction for two weeks disturbed the myocardial contractility and cardiac function of left ventricles of mice. PASE treated mice showed significantly improved cardiac function indexes, including EF, FS, SV and CO, compared with the ISO group. Treatment with PASE also decreased the heart weight/body weight ratio and cardiomyocyte size, and downregulated the mRNA and protein expressions of hypertrophic markers ANP, BNP, and ß-MHC. Furthermore, the changes of autophagy and apoptosis markers, such as LC3II, Beclin1, p62, Bcl-2, Bax and Cleaved-caspase-3 induced by ISO were resumed by PASE treatment. Consistently, PASE demonstrated similar effects on ISO-induced H9c2 cells as it did in vivo. In addition, PASE could counteract the increased autophagy induced by the autophagy inducer, rapamycin. CONCLUSION: PASE attenuated ISO-induced cardiac hypertrophy in mice by inhibiting excessive autophagy and apoptosis in cardiomyocytes. The novel findings may pave the way for the clinical usage of PASE for the prevention of heart diseases related with cardiac hypertrophy.


Assuntos
Cardiomegalia , Miócitos Cardíacos , Extratos Vegetais , Plantago , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Linhagem Celular , Isoproterenol , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Plantago/química , Sementes/química
12.
Phytomedicine ; 81: 153362, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296814

RESUMO

BACKGROUND: Nowadays, the pharmacological effects of Plantaginis semen was getting more and more attention because of the great effect of treating diuresis, hypertension, hyperlipidemia, and hyperglycemia. According to the Chinese Pharmacopoeia, Plantaginis semen is the seed of Plantago asiatica L. or P. depressa Willd. This was verified by examining chemical composition differences in a preliminary experiment, predicting their differences in pharmacology. PURPOSE: In this study, we aimed to compared the the differences in main components and anti-obesity effects of Plantago asiatica L. seed extract (PASE) and P. depressa Willd. seed extract (PDSE). STUDY DESIGN AND METHODS: The ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis was used to characterize and compare the differences chemical constituents of PASE and PDSE. The difference therapeutic effects between PASE and PDSE on obesity and associated metabolic disorders was investigated by high-fat (HF) diet induced mice model. RESULTS: The fingerprint of Plantaginis semen were established by screening and identified 15 main components, including iridoids, phenethanol glycosides, flavonoids, guanidines, and fatty acids. Pentahydroxy flavanone was observed only in PDSE but not in PASE. The quantitative analysis results indicated that the main bioactive components in PASE were geniposidic acid and acteoside; their concentrations were three times higher in PASE than in PDSE. In anti-obesity effects, the result show the levels of fasting blood glucose were improved in both PASE and PDSE when compared with the HF group, while the PASE is show a significant effect then the PDSE group and improved the glucose tolerance but not in PDSE. The results also displayed that the Plantaginis semen did not modify food intake or body weight but decreased abdominal white/brown adipocyte size, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-c), hepatic TG and TC, fecal TG and TC concentrations when compared with the HF group. Among these indicators, serum TG, liver TG, fecal TC and TG levels were significantly improved in PASE compared with PDSE. The results indicated that PASE treatment more effectively improved lipid and glucose metabolism in HF diet-induced obese mice than did PDSE. CONCLUSION: As Plantaginis semen sources, P. asiatica L. seeds demonstrated more bioactive components and favorable metabolic disorder treatment outcomes than did P. depressa Willd. seeds.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantago/química , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Animais , Fármacos Antiobesidade/química , Peso Corporal/efeitos dos fármacos , LDL-Colesterol/sangue , Dieta Hiperlipídica , Hiperlipidemias/tratamento farmacológico , Glucosídeos Iridoides/análise , Iridoides/análise , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Extratos Vegetais/química , Sementes/química , Triglicerídeos/sangue
13.
Int J Biol Macromol ; 164: 2134-2140, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755704

RESUMO

The intestinal epithelium is known as an important barrier to protect the body from harmful pathogens or toxic substance that may induce intestinal barrier injury. The aim of this study was to investigate the effects of polysaccharide from the seeds of Plantago asiatica L. (PLP) on nonylphenol (NP) induced intestinal barrier injury in vitro. Caco-2 cells were pretreated with PLP, or co-cultured with PLP and NP simultaneously, and cytotoxicity, LDH leakage, transepithelial electrical resistance (TEER), FITC-dextran flux and tight junction (TJ) proteins were conducted to evaluate the intestinal barrier function. The results suggested that PLP pretreatment or co-culture with NP could significantly attenuated NP induced Caco-2 cytotoxicity, suppressed LDH release, restored the TEER value and paracellular permeability of Caco-2 monolayers, which were attributed to enhancing the TJ protein expressions. In addition, PLP co-cultured with NP possessed better protective effects against NP induced cytotoxicity. This study indicated that PLP assuaged NP induced intestinal barrier injury by increasing TJ, and threw light on the development of a dietary supplementation for preventing exogenous toxic substances induced intestinal barrier injury or improving intestinal TJ barrier function.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Fenóis/farmacologia , Plantago/química , Polissacarídeos/farmacologia , Sementes/química , Junções Íntimas/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Técnicas de Cocultura/métodos , Humanos
14.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316264

RESUMO

Plantago asiatica L. is widely distributed in Eastern Asia and a commonly used drug in China, Korea, and Japan for diuretic and antiphlogistic purposes. In this experiment, the present study was performed to isolate antioxidant molecules based on the DPPH scavenging activity assay and discover the bioactive compounds which contributed to performing the function of Plantago asiatica L. Each faction was chosen for further isolation guided by DPPH scavenging activity assay. Afterwards, two potential bioactive molecules, aesculetin and apigenin, were isolated for in vitro antioxidant activity in cells. Hydrogen-peroxide-induced oxidative stress led to decreased cell viability, impaired intercellular junction, and damage to the cell membrane and DNA. Furthermore, aesculetin ameliorated decreased cell viability induced by hydrogen peroxide via upregulation of antioxidant related genes, and apigenin also protected against H2O2 mainly by improving the glutathione (GSH) antioxidant system, such as increasing the activity of glutathione peroxidase (GPX), glutathione reductase (GR), and the ration of GSH/glutathione disulfide (GSSG). Above all, these findings suggest that aesculetin and apigenin may be bioactive compounds for antioxidant function in Plantago asiatica L.


Assuntos
Antioxidantes/isolamento & purificação , Apigenina/farmacologia , Extratos Vegetais/análise , Plantago/química , Umbeliferonas/farmacologia , Antioxidantes/farmacologia , Apigenina/isolamento & purificação , Compostos de Bifenilo/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Picratos/química , Umbeliferonas/isolamento & purificação , Regulação para Cima
15.
Front Pharmacol ; 11: 612478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542689

RESUMO

Plantago asiatica L. is a natural medicinal plant that has been widely used for its various pharmacological effects such as antidiarrheal, anti-inflammatory, and wound healing. This study aims to explore the antidiarrheal active ingredients of Plantago asiatica L. that can be used as quality markers to evaluate P. asiatica L. superfine powder (PSP). Molecular docking experiment was performed to identify the effective components of P. asiatica L., which were further evaluated by an established mouse diarrhea model. Na+/K+-ATPase and creatine kinase (CK) activities and the Na+/K+ concentrations were determined. The gene expression of ckb and Atp1b3 was detected. PSP was prepared and evaluated in terms of the tap density and the angle of repose. The structures of PSPs of different sizes were measured by infrared spectra. The active ingredient contents of PSPs were determined by HPLC. The results indicated that the main antidiarrheal components of P. asiatica L. were luteolin and scutellarein that could increase the concentration of Na+ and K+ by upregulating the activity and gene level of CK and Na+/K+-ATPase. In addition, luteolin and scutellarein could also decrease the volume and weight of small intestinal contents to exert antidiarrheal activity. Moreover, as the PSP size decreased from 6.66 to 3.55 µm, the powder tended to be amorphous and homogenized and of good fluidity, the content of active compounds gradually increased, and the main structure of the molecule remained steady. The optimum particle size of PSP with the highest content of active components was 3.55 µm, and the lowest effective dose for antidiarrhea was 2,000 mg/kg. Therefore, the antidiarrheal active ingredients of PSP were identified as luteolin and scutellarein that exert antidiarrheal activity by binding with Na+/K+-ATPase. PSP was successfully prepared and could be used as a new dosage form for the diarrhea treatment.

16.
J Med Food ; 22(10): 1058-1066, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31560611

RESUMO

Previous studies have proven that polysaccharide obtained from the seeds of Plantago asiatica L. (PLCP) could induce maturation of murine dendritic cells, promote defecation, and possess antioxidant activity in vitro. However, the effect of PLCP on lipopolysaccharide (LPS)-induced liver injury in mice has been rarely reported. In this study, we investigated the anti-inflammatory effect of PLCP on LPS-induced liver injury. Mice were pretreated orally with different dose of PLCP for 3 weeks. On day 22, they were injected intraperitoneally with LPS and sacrificed 12 h later. The results showed that PLCP inhibited the excessive production of tumor necrosis factor-α, interleukin (IL)-6, IL-10, IL-2, and IL-1ß in mouse serum and liver. PLCP also improved glutathione peroxidase and total antioxidant capacity activities in mouse liver. In addition, PLCP inhibited nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 expression, and increased metallothionein production in mouse liver. Consequently, PLCP may possess protective effects on inflammatory associated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Plantago/química , Polissacarídeos/farmacologia , Sementes/química , Animais , Ciclo-Oxigenase 2/metabolismo , Interleucinas/sangue , Lipopolissacarídeos , Metalotioneína/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos Fitoquímicos/farmacologia , Distribuição Aleatória , Fator de Necrose Tumoral alfa/sangue
17.
Technol Health Care ; 27(5): 567-577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156193

RESUMO

BACKGROUND: The Plantago asiatica L. is easy to cultivate and has been used as a folk remedy since ancient times because of various pharmacological actions such as anti-inflammation and antioxidation. It also contains a variety of flavonoids such as aucubin, which is thought to be excellent for whitening, antioxidant and anti-inflammatory action. OBJECTIVE: We investigated the effect of P. asiatica L. leaf ethanol extracts containing various active ingredients on antioxidative, anti-inflammation and whitening action and investigated its potential as a health care material. P. asiatica L. has been widely used in folk remedies. RESULTS: The cell toxicity test using RAW264.7 cells showed a high cell survival rate of over 75%, thus demonstrating the safety of the sample. In order to study the antioxidant activity of P. asiatica L. leaf ethanol extracts, we studied a sample which showed radical scavenging activity in a dose-dependent manner. To observe the antioxidant activity at the cell level, RAW 264.7 cells were used and inhibition of ROS production was measured. The ROS production was suppressed in a dose-dependent manner and the scavenging activity was stronger than the sample's own radical scavenging ability. To observe the anti-inflammatory effect of P. asiatica L. leaf ethanol extracts, inhibition of NO generation was observed using LPS-induced RAW 264.7 cells. NO generation was inhibited in a dose-dependent manner and was strongly inhibited by 31% at 100 µg/mL. In vitro, L-DOPA and L-tyrosine were used to inhibit tyrosinase action in a dose-dependent manner. The concentration of melanin at 1, 10, and 100 µg/mL was suppressed in B16 F10 melanin cells supplemented with α-MSH in the cells, and the inhibition was suppressed to 29% at 100 µg/mL. In the B16 F10 melanin cell stimulated with MSH, the P. asiatica L. leaf ethanol extracts inhibited melanin formation in a dose-dependent manner. CONCLUSION: P. asiatica L. leaf ethanol extracts are expected to be developed as whitening cosmeceutical ingredients and as health care ingredients with antioxidant and anti-inflammatory properties.


Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Plantago , Preparações Clareadoras de Pele/farmacologia , Animais , Sobrevivência Celular , Relação Dose-Resposta a Droga , Melaninas/biossíntese , Camundongos , Monofenol Mono-Oxigenase/biossíntese , Óxido Nítrico/biossíntese , Células RAW 264.7
18.
Front Pharmacol ; 10: 403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114496

RESUMO

Plantago asiatica L. seeds is a common folk medicine with a long history of medical use in China because of its antipyretic, diuretic, and expectorant properties. It has been applied to treat hypertension clinically due to its diuresis, however, its efficacy and mechanisms on anti-hypertension has not been reported yet to our knowledge. In this study, we investigated the antihypertensive effect and underlying mechanisms of P. asiatica L. seeds extract (PASE) in spontaneously hypertensive rat (SHR). Male SHRs were treated with 2.5 mg/kg of fosinopril (FOS) and 400 mg/kg of PASE orally per day for once or 12 weeks. SHR or Wistar-Kyoto rats (WKY) receiving vehicle (distilled water) was used as control. The results demonstrated systolic, diastolic, and mean blood pressures (SBP, DBP, and MBP) were significantly lowered after single and long-term intragastric administration of PASE. The cardiac and aortic index and collagen accumulation were improved in the PASE group compared with the SHRs group. Meanwhile, PASE treatment remarkably reduced urine total protein, the ratio of serum urea nitrogen to serum creatinine, and increased serum potassium. The levels of serum angiotensin I (Ang I), angiotensin II (Ang II), the ratio of Ang II to Ang I, and aldosterone (ALD) were lowered after treatment of PASE. Besides, PASE and its major active constituents of phenylethanoid glycosides, including isoacteoside, plantamajoside and acteoside, were found to effectively inhibit angiotensin-converting enzyme (ACE) activation in vitro. These findings suggest that PASE has the antihypertensive effect that may involve a mechanism of ACE inhibition and simultaneously protect organ damage against hypertension.

19.
Mol Nutr Food Res ; 62(20): e1800222, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30211972

RESUMO

SCOPE: Type 2 diabetes is a complex metabolic and endocrine disorder worldwide, which causes severe health and economic problems. The aim of this study is to investigate the molecular mechanisms by which arabinoxylan from Plantago asiatica L. attenuates type 2 diabetes from the perspective of urine metabolomics. METHODS AND RESULTS: High-fat diet and streptozotocin-induced type 2 diabetic rats are treated with arabinoxylan, then the urine samples are collected for untargeted metabolomics analysis by UPLC-Triple-TOF/MS. Diabetes causes significant increases in the levels of acetone, glucose, 2-oxoglutarate, and leucine, and significant decreases in the concentrations of creatine, histidine, lysine, l-tryptophan, hippurate, l-cysteine, kynurenine, and arabitol as compared with normal rats (p < 0.01). And these 12 metabolites (with VIP cut-off value > 1) can be used as biomarkers in type 2 diabetes. A total of 21 urinary metabolites are significantly improved by arabinoxylan administration in diabetic rats, and these metabolites are mainly involved in TCA cycle, and metabolism of lipid and ketone body, taurine and hypotaurine, tryptophan, and branched chain amino acids. CONCLUSION: Arabinoxylan administration improves carbohydrate, lipid, and amino acid metabolism in type 2 diabetic rats, which provide important insights into the mechanisms underlying type 2 diabetes as well as the effects of arabinoxylan.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Xilanos/farmacologia , Aminoácidos/metabolismo , Animais , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/urina , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/urina , Dieta Hiperlipídica , Masculino , Espectrometria de Massas/métodos , Metabolômica/métodos , Ratos Wistar
20.
Saudi J Biol Sci ; 25(6): 1202-1207, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30174523

RESUMO

Plantago species are used as traditional medicine in Asian and Europe. Polysaccharide isolated from the seeds of Plantago asiatica L. could stimulate maturation transformation of bone-marrow derived dendritic cells (DCs). We found that blocking p38, ERK1/2 and JNK MAPK signal transduction could significantly decreased the PLP-2 induced expression of MHC II, CD86 surface molecules on DCs. Blocking p38 and JNK signal also significantly inhibited the cytokine secretion of TNF-α and IL-12p70 as well, while blocking ERK1/2 signal only decreased the secretion of TNF-α. Meanwhile, DCs in the three MAPK signal-blocking groups showed dramatically attenuated effects on stimulating proliferation of T lymphocytes. Similarly, blocking signal transduction of NF-κB pathway also significantly impaired the phenotypic and functional maturation development of DCs induced by PLP-2. These data suggest that MAPK and NF-κB pathway mediates the PLP-induced maturation on DCs. Especially, among the three MAPK pathways, activation of JNK signal transduction is the most important for DCs development after PLP-2 incubation. And PLP-2 may activate the MAPK and NF-κB pathway by triggering toll-like receptor 4 on DCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...