Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835260

RESUMO

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Proteínas de Membrana , Plasmodium berghei , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Feminino , Camundongos , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Malária/prevenção & controle , Malária/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Proteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C , Parasitemia/imunologia , Parasitemia/prevenção & controle , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
2.
Life (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929667

RESUMO

Plakortinic acids C (1) and D (2), an unseparable pair of endoperoxide polyketides isolated and purified from the symbiotic association of Caribbean Sea sponges Plakortis symbiotica-Xestospongia deweerdtae, underwent in vitro evaluation for antiplasmodial activity against the malaria parasite Plasmodium berghei using a drug luminescence assay. Initial screening at 10 µM revealed 50% in vitro parasite growth inhibition. The title compounds displayed antiplasmodial activity with an EC50 of 5.3 µM toward P. berghei parasites. The lytic activity against erythrocytes was assessed through an erythrocyte cell lysis assay, which showed non-lytic activity at lower concentrations ranging from 1.95 to 3.91 µM. The antiplasmodial activity and the absence of hemolytic activity support the potential of plakortinic acids C (1) and D (2) as promising lead compounds. Moreover, drug-likeness (ADMET) properties assessed through the pkCSM server predicted high intestinal absorption, hepatic metabolism, and volume of distribution, indicating favorable pharmacokinetic profiles for oral administration. These findings suggest the potential suitability of these metabolites for further investigations of antiplasmodial activity in multiple parasitic stages in the mosquito and Plasmodium falciparum. Notably, this study represents the first report of a marine natural product exhibiting the unique 7,8-dioxatricyclo[4.2.2.02,5]dec-9-ene motif being evaluated against malaria.

3.
J Ethnopharmacol ; 333: 118413, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824975

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY: Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS: The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS: Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS: The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.

4.
ADMET DMPK ; 12(2): 343-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720925

RESUMO

Background and Purpose: Plasmodium falciparum and P. vivax are responsible for most malaria cases in humans in the African Region and the Americas; these parasites have developed resistance to classic antimalarial drugs. On the other hand, previous investigations of the alkyl-linked bis tetrahydro-(2H)-1,3,5-thiadiazine-2-thione (bis-THTT) derivatives compounds show satisfactory results against protozoan parasites such as Trypanosoma cruzi, Trypanosoma vaginalis, Trypanosoma brucei rhodesiense and Leishmania donovani. Therefore, it is possible to see some effect of bis-THTT derivatives on other protozoan parasites, such as Plasmodium. Experimental Approach: This study aimed to perform an in vivo biological evaluation of bis-THTT (JH1 to JH6) derivatives compounds as possible anti-malaria drugs in BALB/c mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL strains. In this work, we evaluated the compounds as potential antimalarial drugs in BALB/c mice infected with Plasmodium strains. Key Results: For each compound, we assess the percentages of parasitemia by smears from tail blood and the humoral response by indirect ELISA test using each compound as an antigen. We also evaluated the B lymphocyte response and the cytotoxicity of the bis-THTT derivatives compounds with MTT cell proliferation assays. Conclusions: Our results show that the bis-THTT derivatives JH2 and JH4 presented effective parasitemia control in mice infected with P. berghei; JH5 and JH6 compounds have similar infection control results as chloroquine in mice infected P. yoelii strain. The evaluation of bis-THTT derivatives compounds in a model of BALB/c mice infected with P. berghei and P. yoelii allowed us to conclude that some of them have an antimalarial effect; however, none of the tested compounds exceeded the efficiency of chloroquine.

5.
Biochem Pharmacol ; 225: 116243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697310

RESUMO

The spread of malarial parasites resistant to first-line treatments such as artemisinin combination therapies is a global health concern. Differentiation-inducing factor 1 (DIF-1) is a chlorinated alkylphenone (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) hexan-1-one) originally found in the cellular slime mould Dictyostelium discoideum. We previously showed that some derivatives of DIF-1, particularly DIF-1(+2) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) octan-1-one), exert potent antimalarial activities. In this study, we synthesised DIF-1(+3) (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl) nonan-1-one). We then evaluated the effects of DIF-1(+3) in vitro on Plasmodium falciparum and in vivo over 7 days (50-100 mg/kg/day) in a mouse model of Plasmodium berghei. DIF-1(+3) exhibited a half-maximal inhibitory concentration of approximately 20-30 % of DIF-1(+2) in three laboratory strains with a selectivity index > 263, including in strains resistant to chloroquine and artemisinin. Parasite growth and multiplication were almost completely suppressed by treatment with 100 mg/kg DIF-1(+3). The survival time of infected mice was significantly increased (P = 0.006) with no apparent adverse effects. In summary, addition of an acyl group to DIF-1(+2) to prepare DIF-1(+3) substantially enhanced antimalarial activity, even in drug-resistant malaria, indicating the potential of applying DIF-1(+3) for malaria treatment.


Assuntos
Antimaláricos , Hexanonas , Plasmodium falciparum , Antimaláricos/farmacologia , Animais , Camundongos , Hexanonas/farmacologia , Hexanonas/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Dictyostelium/efeitos dos fármacos , Acilação , Feminino , Hidrocarbonetos Clorados
6.
Artigo em Inglês | MEDLINE | ID: mdl-38725654

RESUMO

Plasmodium infection is a health challenge. Although, antiplasmodial drugs kill the parasites, information on the effects of infection and drugs on the expression of some genes is limited. Malaria was induced in two different studies using NK65 (chloroquine-susceptible, study 1), and ANKA (chloroquine-resistant, study 2) strains of Plasmodium berghei in 30 male Swiss mice (n = 5) in each study. Mice orally received 10 mL/kg distilled water, (infected control), Mefloquine (MF) (10 mg/kg), MF and Curcumin (CM) (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (un-infected) were used as the control. After treatment, total Ribonucleic acid (RNA) was isolated from liver and erythrocytes while Deoxyribonucleic acid (DNA)-free RNA were converted to cDNA. Polymerase Chain Reaction (PCR) amplification was performed and relative expressions of FIKK12, AQP3, P38 MAPK, NADH oxidoreductase, and cytochrome oxidase expressions were determined. Markers of glycolysis, toxicity and antioxidants were determined using ELISA assays. While the expression of FIKK12 was blunted by MF in the susceptible study, co-treatment with curcumin (25 mg/kg) yielded the same results in the chloroquine-resistant study. Similar results were obtained on AQP3 in both studies. Curcumin decreased P38 MAPK in both studies. Plasmodium infection decreased NADH oxidoreductase and cytochrome oxidase but mefloquine-curcumin restored the expression of these genes. While glycolysis and toxicity were inhibited, antioxidant systems improved in the treated groups. Curcumin is needed for effective therapeutic efficacy and prevention of toxicity. Plasmodium infection and treatment modulate the expressions of some genes in the host. Curcumin combination with mefloquine modulates the expression of some genes in the host.

7.
Phytomedicine ; 129: 155644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761524

RESUMO

BACKGROUND: A global death toll of 608,000 in 2022 and emerging parasite resistance to artemisinin, the mainstay of antimalarial chemotherapy derived from the Chinese herb Artemisia annua, urge the development of novel antimalarials. A clinical trial has found high antimalarial potency for aqueous extracts of A. annua as well as its African counterpart Artemisia afra, which contains only trace amounts of artemisinin. The artemisinin-independent antimalarial activity of A. afra points to the existence of other antimalarials present in the plant. However, the publication was retracted due to ethical and methodological concerns in the trial, so the only evidence for antimalarial activity of A. afra is built on in vitro studies reporting efficacy only in the microgram per milliliter range. HYPOTHESIS: Our study aims to shed more light on the controversy around the antimalarial activity of A. afra by assessing its efficacy in mice. In particular, we are testing the hypothesis that A. afra contains a pro-drug that is inactive in vitro but active in vivo after metabolization by the mammalian host. METHODS: Plasmodium berghei-infected mice were treated once or thrice (on three consecutive days) with various doses of A. afra, A. annua, or pure artemisinin. RESULTS: Aqueous powder suspensions of A. annua but not A. afra showed antimalarial activity in mice. CONCLUSION: Our experiments conducted in mice do not support the pro-drug hypothesis.


Assuntos
Antimaláricos , Artemisia , Artemisininas , Malária , Extratos Vegetais , Plasmodium berghei , Pós , Antimaláricos/farmacologia , Animais , Artemisia/química , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Artemisininas/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Artemisia annua/química , Suspensões , Masculino
8.
Int J Parasitol Drugs Drug Resist ; 25: 100539, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621317

RESUMO

Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.

9.
J Vet Med Sci ; 86(5): 485-492, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569883

RESUMO

Plasmodium parasites within mosquitoes are exposed to various physiological processes, such as blood meal digestion activity, the gonotrophic cycle, and host responses preventing the entry of parasites into the midgut wall. However, when in vitro-cultured ookinetes are injected into the hemocoel of mosquitoes, Plasmodium parasites are not affected by the vertebrate host's blood contents and do not pass through the midgut epithelial cells. This infection method might aid in identifying mosquito-derived factors affecting Plasmodium development within mosquitoes. This study investigated novel mosquito-derived molecules related to parasite development in Anopheles mosquitoes. We injected in vitro-cultured Plasmodium berghei (ANKA strain) ookinetes into female and male Anopheles stephensi (STE2 strain) mosquitoes and found that the oocyst number was significantly higher in males than in females, suggesting that male mosquitoes better support the development of parasites. Next, RNA-seq analysis was performed on the injected female and male mosquitoes to identify genes exhibiting changes in expression. Five genes with different expression patterns between sexes and greatest expression changes were identified as being potentially associated with Plasmodium infection. Two of the five genes also showed expression changes with infection by blood-feeding, indicating that these genes could affect the development of Plasmodium parasites in mosquitoes.


Assuntos
Anopheles , Plasmodium berghei , Animais , Anopheles/parasitologia , Feminino , Masculino , Plasmodium berghei/fisiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Camundongos , Interações Hospedeiro-Parasita
10.
J Ethnopharmacol ; 331: 118241, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670400

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Andrographis paniculata (AP) ((Burm f.) Wall. ex Nees) is a medicinal plant, documented for its folkloric use in the treatment of malaria. AIM: This study was designed to determine the potency of extract and fractions of A. paniculata (AP) as a curative, both for susceptible and resistant malaria and to also determine the plant's mechanism of action. This study was also designed to determine whether AP extract and its most potent fraction will mitigate infection-mediated mitochondrial dysfunction, and to assess the phytochemical constituents of the most potent fraction. MATERIALS AND METHODS: n-Hexane, dichloromethane, ethylacetate and methanol were used to partition the methanol extract of A. paniculata. Graded doses of these extract and fractions were used to treat mice infected with chloroquine-sensitive strain of P. berghei in a curative model. The most potent fraction was used to treat mice infected with resistant (ANKA strain) P. berghei. Inhibition of hemozoin formation, reversal of mitochondrial dysfunction and antiinflammatory potentials were determined. A combination of ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry and nuclear magnetic resonance spectroscopy were used for chemical analysis. RESULTS: Microscopy revealed that the dichloromethane fraction decreased the parasite burden the most, and inhibition of the hemozoin formation is one of its mechanisms of action. The dichloromethane fraction reversed parasite-induced mitochondrial pore opening in the host, enzyme-dependent ATP hydrolysis and peroxidation of host mitochondrial membrane phospholipids as well as its antiinflammatory potentials. The UPLC-qTOF-MS report and NMR fingerprints of the dichloromethane fraction of A. paniculata yielded fourteen compounds of which sibiricinone C was identified from the plant for the first time. CONCLUSION: Fractions of A. paniculata possess antiplasmodial effects with the dichloromethane fraction having the highest potency. The potent effect of this fraction may be attributed to the phytochemicals present because it contains terpenes implicated with antimalarial and antiinflammatory activities.


Assuntos
Andrographis , Antimaláricos , Malária , Extratos Vegetais , Plasmodium berghei , Animais , Plasmodium berghei/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Andrographis/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Hemeproteínas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Feminino
11.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639491

RESUMO

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

12.
Parasites Hosts Dis ; 62(1): 42-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443769

RESUMO

Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) > 100 µM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Camundongos , Animais , Humanos , Antimaláricos/farmacologia , Camundongos Endogâmicos ICR , Plasmodium berghei , Plasmodium falciparum , Cloroquina/farmacologia , Morfolinas , Amidas/farmacologia , Modelos Animais de Doenças
13.
Bio Protoc ; 14(5): e4952, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38464937

RESUMO

The Plasmodium parasites that cause malaria undergo an obligate, asymptomatic developmental stage in the host liver before initiating the symptomatic blood-stage infection. The parasite liver stage is a key intervention point for antimalarial chemoprophylaxis: successful targeting of liver-stage parasites prevents disease development in individuals and can help to reduce parasite transmission in populations, as the gametocyte forms that transmit infection to mosquitos are exclusively found in the blood stage. Antimalarial drugs that can target multiple parasite stages are thus highly desirable, and one emerging cellular target for such multistage active compounds is the process of protein synthesis or translation. Quantitative study of liver stage translation, and thus mechanistic evaluation of translation inhibitors against liver stage parasites, is not amenable to the methods allowing quantification of asexual blood stage translation, such as radiolabeled amino acid incorporation or lysate-based translation of reporter transcripts. Here, we present a method using o-propargyl puromycin (OPP) labeling of host and parasite nascent proteomes in the P. berghei-HepG2 infection model, followed by automated confocal image acquisition and computational separation of P. berghei vs. H. sapiens nascent proteome signals to allow simultaneous readout of the effects of translation inhibitors on both host and parasite. This protocol details our HepG2 cell culture and infected monolayer handling optimized for microscopy, our OPP labeling workflow, and our approach to automated confocal imaging, image processing, and data analysis. Key features • Uses the o-propargyl puromycin labeling technique developed by Liu et al. to quantitatively analyze protein synthesis in Plasmodium berghei liver-stage parasites in actively translating hepatoma cells. • This quantitative approach should be adaptable for other puromycin-sensitive intracellular pathogens residing in actively translating host cells. • The P. berghei-infected HepG2 recovery and reseeding protocol presented here is of use in applications beyond nascent proteome labeling and quantification.

14.
J Ethnopharmacol ; 326: 117936, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38382655

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus muellerianus (Kunze) Exell, a member of the Phyllanthaceae family, is a medicinal plant widely distributed in Africa. Decoctions from the leaves are used in Nigeria to treat fevers, convulsions, some neurological disorders and malaria. AIM OF THE STUDY: This study is to evaluate the anti-malarial properties of methanol extract of Phyllanthus muellerianus (MEPM) leaves and its ethyl acetate fraction using a murine malaria model infected with Plasmodium berghei. Additionally, we seek to investigate the potential modulatory effects of this extract and fraction on CD4+ T-cell populations in the context of malaria infection. MATERIALS AND METHODS: The anti-malarial effects of the leaf methanol extract of Phyllanthus muellerianus (MEPM) were screened using three established in vivo models of anti-plasmodial screening namely the curative, suppressive and prophylactic models. The methanol extract (MEPM) was afterwards fractionated into hexane (HFPM), ethyl acetate (EAFPM), and methanol (MFPM) fractions. In the pilot anti-malarial screening of the fractions, EAFPM exhibited the best antiparasitic activity. Subsequently, EAFPM was screened for anti-malarial activity using the three models above. The effects of the MEPM and EAFPM on haematological indices (Hb and PCV) of the inoculated animals were further screened and the mean survival time (MST) of the animals was monitored. CD4+ T cells of various groups were counted before and after treatment using a flow cytometer. The EAFPM was further subjected to HPLC analysis for identification of its major compounds. RESULTS: The EAFPM (100 and 200 mg/kg) elicited 88% and 93% cure respectively in the curative model, while artesunate (5 mg/kg,- the positive control) gave 87% protection. The MEPM and EAFPM also gave significant suppression of parasitemia in the suppressive model. The treated groups survived beyond 28 days as against 11 days by the control group (infected but not treated). The treated groups also prevented anaemia seen in the negative control. The EAFPM group significantly modulated the CD4+ T cell. Compounds identified were Gallocatechin, Quercetin -3-O-gallate, Ellagic acid, and Methylellagic acid rhamnoside). CONCLUSION: The study established that the leaf of Phyllanthus muellerianus possesses antimalarial activity, thus lending support to its use in the folkloric treatment of malaria.


Assuntos
Acetatos , Antimaláricos , Etanol , Etilenoglicóis , Ácidos Graxos , Malária , Phyllanthus , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Metanol/uso terapêutico , Plasmodium berghei , Linfócitos T , Malária/tratamento farmacológico , Malária/parasitologia , Folhas de Planta , Linfócitos T CD4-Positivos , Nigéria
15.
BMC Complement Med Ther ; 24(1): 79, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326823

RESUMO

BACKGROUND: Chemotherapies target the PfEMP-1 and PfPKG proteins in Plasmodium falciparum, the parasite that causes malaria, in an effort to prevent the disease's high fatality rate. This work identified the phytochemical components of Nauclea latifolia roots and docked the chemical compounds against target proteins, and examined the in vivo antiplasmodial effect of the roots on Plasmodium berghei-infected mice. METHODS: Standard protocols were followed for the collection of the plant's roots, cleaning, and drying of the roots, extraction and fraction preparation, assessment of the in vivo antiplasmodial activity, retrieval of the PfEMP-1 and PfPKG proteins, GCMS, ADME, and docking studies, chromatographic techniques were employed to separate the residual fraction's components, and the Swis-ADME program made it possible to estimate the drug's likeness and pharmacokinetic properties. The Auto Dock Vina 4.2 tool was utilized for molecular docking analysis. RESULTS: The residual fraction showed the best therapeutic response when compared favorably to amodiaquine (80.5%) and artesunate (85.1%). It also considerably reduced the number of parasites, with the % growth inhibition of the parasite at 42.8% (D2) and 83.4% (D5). Following purification, 25 compounds were isolated and characterized with GCMS. Based on their low molecular weights, non-permeation of the blood-brain barrier, non-inhibition of metabolizing enzymes, and non-violation of Lipinski's criteria, betulinic and ursolic acids were superior to chloroquine as the best phytochemicals. Hence, they are lead compounds. CONCLUSION: In addition to identifying the bioactive compounds, ADME, and docking data of the lead compounds as candidates for rational drug design processes as observed against Plasmodium falciparum target proteins (PfEMP-1 and PfPKG), which are implicated in the pathogenesis of malaria, the study has validated that the residual fraction of N. latifolia roots has the best antiplasmodial therapeutic index.


Assuntos
Antimaláricos , Malária , Rubiaceae , Triterpenos , Camundongos , Animais , Antimaláricos/química , Ácido Ursólico , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Triterpenos/farmacologia , Plasmodium falciparum , Rubiaceae/química
16.
Malar J ; 23(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383417

RESUMO

BACKGROUND: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS: The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS: A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.


Assuntos
Malária , Parasitos , Animais , Humanos , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei , Microscopia Eletrônica
17.
Mol Microbiol ; 121(4): 767-780, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238886

RESUMO

Endoplasmic reticulum (ER) plays a pivotal role in the regulation of stress responses in multiple eukaryotic cells. However, little is known about the effector mechanisms that regulate stress responses in ER of the malaria parasite. Herein, we aimed to identify the importance of a transmembrane protein 33 (TMEM33)-domain-containing protein in life cycle of the rodent malaria parasite Plasmodium berghei. TMEM33 is an ER membrane-resident protein that is involved in regulating stress responses in various eukaryotic cells. A C-terminal tagged TMEM33 was localized in the ER throughout the blood and mosquito stages of development. Targeted deletion of TMEM33 confirmed its importance for asexual blood stages and ookinete development, in addition to its essential role for sporozoite infectivity in the mammalian host. Pilot scale analysis shows that the loss of TMEM33 results in the initiation of ER stress response and induction of autophagy. Our findings conclude an important role of TMEM33 in the development of all life cycle stages of the malaria parasite, which indicates its potential as an antimalarial target.


Assuntos
Malária , Plasmodium berghei , Animais , Retículo Endoplasmático/metabolismo , Estágios do Ciclo de Vida , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo
18.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252559

RESUMO

Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.


Assuntos
Culicidae , Plasmodium , Animais , Feminino , Fatores de Transcrição/genética , Plasmodium/genética , Fator de Transcrição AP-2 , Bioensaio
19.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37314965

RESUMO

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Assuntos
Culicidae , Parasitos , Animais , Culicidae/metabolismo , Culicidae/parasitologia , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo
20.
J Ethnopharmacol ; 321: 117558, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The King of Bitters (Andrographis paniculata) is a plant used to cure a wide range of infectious diseases which includes malaria, fever and others. However, there is a paucity of scientific evidence of its effect on male reproductive indices during malaria treatment. AIM OF THE STUDY: The aim of this study is to evaluate the effect of supplemented diet on antiplasmodial, hematological and male reproductive indices in mice infected with Plasmodium berghei. MATERIALS AND METHODS: Aqueous extract of A. paniculata (King of Bitters, KGB) was prepared and the total phenol and flavonoid contents were determined. Forty-two mice, weighing 20-25 g, were distributed into 7 groups consisting of 6 mice each. The mice were innoculated with strain NK65 Plasmodium berghei (Chloroquine, CQ sensitive) and the parasitemia suppression was assessed. The mice were fed with the dietary supplementation of KGB at varying inclusions (2.5%, 5%, 7.5%, and 10%) and administered 10 mg/kg CQ (which served as the positive control) for 5 consecutive days after infection was established. The reactive malondialdeahyde (MDA), antioxidant [superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH)] and the hematological (hemoglobin, packed cell volume and red blood cell) parameters in the infected mice were determined. The reproductive indices (serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sperm count, sperm motility, and sperm viability) and testis histopathology were also assessed. RESULT: The result revealed that KGB had a total phenol content of 32.55 mgGAE/g and total flavonoid content of 19.71 mgQUE/g. The infected mice treated with the dietary supplementation of KGB showed significantly decreased (p < 0.05) parasitaemia and MDA levels. Furthermore, the 7.5% dietary inclusion showed significant improvement in the antioxidant, hematological and reproductive indices as well as the restoration of testis morphology as seen in the histopathology plate of the infected mice treated with KGB. Hence, this study suggests that the KGB- supplemented diet (7.5%) may be a potential alternative and complementary therapy in the treatment of malaria infection and reproductive disorders.


Assuntos
Antimaláricos , Malária , Masculino , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Plasmodium berghei , Andrographis paniculata , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Motilidade dos Espermatozoides , Sementes , Malária/tratamento farmacológico , Suplementos Nutricionais , Dieta , Flavonoides/farmacologia , Fenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...