Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
ADMET DMPK ; 12(2): 343-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720925

RESUMO

Background and Purpose: Plasmodium falciparum and P. vivax are responsible for most malaria cases in humans in the African Region and the Americas; these parasites have developed resistance to classic antimalarial drugs. On the other hand, previous investigations of the alkyl-linked bis tetrahydro-(2H)-1,3,5-thiadiazine-2-thione (bis-THTT) derivatives compounds show satisfactory results against protozoan parasites such as Trypanosoma cruzi, Trypanosoma vaginalis, Trypanosoma brucei rhodesiense and Leishmania donovani. Therefore, it is possible to see some effect of bis-THTT derivatives on other protozoan parasites, such as Plasmodium. Experimental Approach: This study aimed to perform an in vivo biological evaluation of bis-THTT (JH1 to JH6) derivatives compounds as possible anti-malaria drugs in BALB/c mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL strains. In this work, we evaluated the compounds as potential antimalarial drugs in BALB/c mice infected with Plasmodium strains. Key Results: For each compound, we assess the percentages of parasitemia by smears from tail blood and the humoral response by indirect ELISA test using each compound as an antigen. We also evaluated the B lymphocyte response and the cytotoxicity of the bis-THTT derivatives compounds with MTT cell proliferation assays. Conclusions: Our results show that the bis-THTT derivatives JH2 and JH4 presented effective parasitemia control in mice infected with P. berghei; JH5 and JH6 compounds have similar infection control results as chloroquine in mice infected P. yoelii strain. The evaluation of bis-THTT derivatives compounds in a model of BALB/c mice infected with P. berghei and P. yoelii allowed us to conclude that some of them have an antimalarial effect; however, none of the tested compounds exceeded the efficiency of chloroquine.

2.
Parasit Vectors ; 17(1): 238, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802937

RESUMO

BACKGROUND: Eukaryotic genes contain introns that are removed by the spliceosomal machinery during mRNA maturation. Introns impose a huge energetic burden on a cell; therefore, they must play an essential role in maintaining genome stability and/or regulating gene expression. Many genes (> 50%) in Plasmodium parasites contain predicted introns, including introns in 5' and 3' untranslated regions (UTR). However, the roles of UTR introns in the gene expression of malaria parasites remain unknown. METHODS: In this study, an episomal dual-luciferase assay was developed to evaluate gene expression driven by promoters with or without a 5'UTR intron from four Plasmodium yoelii genes. To investigate the effect of the 5'UTR intron on endogenous gene expression, the pytctp gene was tagged with 3xHA at the N-terminal of the coding region, and parasites with or without the 5'UTR intron were generated using the CRISPR/Cas9 system. RESULTS: We showed that promoters with 5'UTR introns had higher activities in driving gene expression than those without 5'UTR introns. The results were confirmed in recombinant parasites expressing an HA-tagged gene (pytctp) driven by promoter with or without 5'UTR intron. The enhancement of gene expression was intron size dependent, but not the DNA sequence, e.g. the longer the intron, the higher levels of expression. Similar results were observed when a promoter from one strain of P. yoelii was introduced into different parasite strains. Finally, the 5'UTR introns were alternatively spliced in different parasite development stages, suggesting an active mechanism employed by the parasites to regulate gene expression in various developmental stages. CONCLUSIONS: Plasmodium 5'UTR introns enhance gene expression in a size-dependent manner; the presence of alternatively spliced mRNAs in different parasite developmental stages suggests that alternative slicing of 5'UTR introns is one of the key mechanisms in regulating parasite gene expression and differentiation.


Assuntos
Regiões 5' não Traduzidas , Íntrons , Plasmodium yoelii , Regiões Promotoras Genéticas , Regiões 5' não Traduzidas/genética , Íntrons/genética , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Animais , Expressão Gênica , Camundongos , Regulação da Expressão Gênica , Sistemas CRISPR-Cas
3.
J Ethnopharmacol ; 331: 118269, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697409

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, caused by Plasmodium parasites, remains a significant global health challenge, particularly in tropical and subtropical regions. At the same time, the prevalence of toxoplasmosis has been reported to be 30% worldwide. Traditional medicines have long played a vital role in discovering and developing novel drugs, and this approach is essential in the face of increasing resistance to current antimalarial and anti-Toxoplasma drugs. In Indonesian traditional medicine, various plants are used for their therapeutic properties. This study focuses on eleven medicinal plants from which nineteen extracts were obtained and screened for their potential medicinal benefits against malaria and toxoplasmosis. AIMS OF THE STUDY: The aim of this study was to evaluate the efficacy of extracts from Indonesian medicinal plants to inhibit Plasmodium falciparum, a parasite responsible for malaria, and Toxoplasma gondii, an opportunistic parasite responsible for toxoplasmosis. METHODS: Nineteen extracts from eleven plants were subjected to in vitro screening against P. falciparum 3D7 (a chloroquine-sensitive strain) and the T. gondii RH strain. In vitro treatments were conducted on P. falciparum 3D7 and K1 (multidrug-resistant strains) using the potent extracts, and in vivo assessments were carried out with mice infected with P. yoelii 17XNL. LCMS analysis was also conducted to identify the main components of the most effective extract. RESULTS: Seven extracts showed significant antiplasmodial activity (>80% inhibition) at a concentration of 100 µg/ml. These extracts were obtained from Dysoxylum parasiticum (Osbeck) Kosterm., Elaeocarpus glaber (Bl.) Bijdr., Eleutherine americana Merr., Kleinhovia hospita L., Peronema canescens Jack, and Plectranthus scutellarioides (L.) R.Br. Notably, the D. parasiticum ethyl acetate extract exhibited high selectivity and efficacy both in vitro and in vivo. Herein, the key active compounds oleamide and erucamide were identified, which had IC50 values (P. falciparum 3D7/K1) of 17.49/23.63 µM and 32.49/51.59 µM, respectively. CONCLUSIONS: The results of this study highlight the antimalarial potential of plant extracts collected from Indonesia. Particularly, extracts from D. parasiticum EtOH and EtOAc stood out for their low toxicity and strong antiplasmodial properties, with the EtOAc extract emerging as a notably promising antimalarial candidate. Key compounds identified within this extract demonstrate the complexity of extracts' action against malaria, potentially targeting both the parasite and the host. This suggests a promising approach for developing new antimalarial strategies that tackle the multifaceted challenges of drug resistance and disease management. Future investigations are necessary to unlock the full therapeutic potential of these extracts.


Assuntos
Antimaláricos , Extratos Vegetais , Plantas Medicinais , Plasmodium falciparum , Toxoplasma , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Indonésia , Toxoplasma/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/isolamento & purificação , Camundongos , Feminino , Malária/tratamento farmacológico , Malária/parasitologia
4.
Int J Parasitol Drugs Drug Resist ; 25: 100540, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676995

RESUMO

The persistent prevalence and dissemination of drug-resistant malaria parasites continue to challenge the progress of malaria eradication efforts. As a result, there is an urgent need to search for and develop innovative therapies. In this study, we screened synthetic 2,5-diphenyloxazole analogs from Oxytropis lanata. Among 48 compounds, 14 potently inhibited the proliferation of P. falciparum strains 3D7 (chloroquine-sensitive) and K1 (multidrug-resistant) in vitro, exhibited IC50 values from 3.38 to 12.65 µM and 1.27-6.19 µM, respectively, and were toxic to human foreskin fibroblasts at 39.53-336.35 µM. Notably, Compounds 31 (2-(2',3'-dimethoxyphenyl)-5-(2″-hydroxyphenyl)oxazole) and 32 (2-(2',3'-dimethoxyphenyl)-5-(2″-benzyloxyphenyl)oxazole) exhibited the highest selectivity indices (SIs) against both P. falciparum strains (3D7/K1), with values > 40.20/>126.58 and > 41.27/> 59.06, respectively. In the IC50 speed and stage-specific assays, Compounds 31 and 32 showed slow action, along with distinct effects on the ring and trophozoite stages. Microscopy observations further revealed that both compounds impact the development and delay the progression of the trophozoite and schizont stages in P. falciparum 3D7, especially at concentrations 100 times their IC50 values. In a 72-h in vitro exposure experiment at their respective IC80 in P. falciparum 3D7, significant alterations in parasitemia levels were observed compared to the untreated group. In Compound 31-treated cultures, parasites shrank and were unable to reinvade red blood cells (RBCs) during an extended 144-h incubation period, even after compound removal from the culture. In vivo assessments were conducted on P. yoelii 17XNL-infected mice treated with Compounds 31 and 32 at 20 mg/kg administered once daily for ten days. The treated groups showed statistically significant lower peaks of parasitemia (Compound 31-treated: trial 1 12.7%, trial 2 15.8%; Compound 32-treated: trial 1 12.7%, trial 2 14.0%) compared to the untreated group (trial 1 21.7%, trial 2 28.3%). These results emphasize the potential of further developing 2,5-diphenyloxazoles as promising antimalarial agents.

5.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38624215

RESUMO

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Assuntos
Antígenos CD , Antígenos de Protozoários , Macrófagos , Malária , Plasmodium yoelii , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Membrana Celular/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/imunologia , Malária/parasitologia , NF-kappa B/metabolismo , NF-kappa B/imunologia , Plasmodium yoelii/imunologia , Ligação Proteica , Transdução de Sinais
6.
Immunol Res ; 72(3): 383-394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265549

RESUMO

Although the functions of programmed death-1 (PD-1) on αß T cells have been extensively reported, a role for PD-1 in regulating γδT cell function is only beginning to emerge. Here, we investigated the phenotypic and functional characteristics of PD-1-expressing γδT cells, and the molecular mechanism was also explored in the Plasmodium yoelii nigeriensis (P. yoelii NSM)-infected mice. Flow cytometry and single-cell RNA sequencing (scRNA-seq) were performed. An inverse agonist of RORα, SR3335, was used to investigate the role of RORα in regulating PD-1+ γδT cells. The results indicated that γδT cells continuously upregulated PD-1 expression during the infection period. Higher levels of CD94, IL-10, CX3CR1, and CD107a; and lower levels of CD25, CD69, and CD127 were found in PD-1+ γδT cells from infected mice than in PD-1- γδT cells. Furthermore, GO enrichment analysis revealed that the marker genes in PD-1+ γδT cells were involved in autophagy and processes utilizing autophagic mechanisms. ScRNA-seq results showed that RORα was increased significantly in PD-1+ γδT cells. GSEA identified that RORα was mainly involved in the regulation of I-kappaB kinase/NF-κB signaling and the positive regulation of cytokine production. Consistent with this, PD-1-expressing γδT cells upregulated RORα following Plasmodium yoelii infection. Additionally, in vitro studies revealed that higher levels of p-p65 were found in PD-1+ γδT cells after treatment with a RORα selective synthetic inhibitor. Collectively, these data suggest that RORα-mediated attenuation of NF-κB signaling may be fundamental for PD-1-expressing γδT cells to modulate host immune responses in the spleen of Plasmodium yoelii nigeriensis-infected C57BL/6 mice, and it requires further investigation.


Assuntos
Malária , Plasmodium yoelii , Receptor de Morte Celular Programada 1 , Baço , Animais , Plasmodium yoelii/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Malária/imunologia , Malária/parasitologia , Camundongos , Baço/imunologia , Baço/parasitologia , Feminino , Transdução de Sinais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
7.
Bioorg Med Chem Lett ; 97: 129561, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967655

RESUMO

Following the economic and social state of humanity, Malaria is categorized as one of the life-threatening illness epidemics in under developed countries. For the eradication of the same, 1,2,4-trioxanes 17a1-a2, 17b1-b2, 17c1-c2 15a-c, 18 and 19 have been synthesized continuing the creation of a novel series. Additionally, these novel compounds were tested for their effectiveness against the multidrug-resistant Plasmodium yoelii nigeriensis in mice model using both oral and intramuscular (im) administration routes. The two most potent compounds of the series, 17a1 and 17a2, demonstrated 100 % protection at 48 mg/kg x 4 days via oral route, which is twice as potent as artemisinin. In this model artemisinin provided 100 % protection at a dose of 48 mg/kg × 4 days and 80 % protection at 24 mg/kg × 4 days via im route.


Assuntos
Antimaláricos , Artemisininas , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Artemisininas/farmacologia
8.
Pathogens ; 12(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887758

RESUMO

Malaria, a life-threatening mosquito-borne disease caused by Plasmodium parasites, continues to pose a significant global health burden. Despite notable progress in combating the disease in recent years, malaria remains prevalent in many regions, particularly in Southeast Asia and most of sub-Saharan Africa, where it claims hundreds of thousands of lives annually. Flavonoids, such as the baicalein class of compounds, are known to have antimalarial properties. In this study, we rationally designed and synthesized a series of baicalein derivatives and identified a lead compound, FNDR-10132, that displayed potent in vitro antimalarial activity against Plasmodium falciparum (P. falciparum), both chloroquine-sensitive (60 nM) and chloroquine-resistant (177 nM) parasites. FNDR-10132 was evaluated for its antimalarial activity in vivo against the chloroquine-resistant strain Plasmodium yoelii N67 in Swiss mice. The oral administration of 100 mg/kg of FNDR-10132 showed 44% parasite suppression on day 4, with a mean survival time of 13.5 ± 2.3 days vs. 8.4 ± 2.3 days of control. Also, FNDR-10132 displayed equivalent activity against the resistant strains of P. falciparum in the 200-300 nM range. This study offers a novel series of antimalarial compounds that could be developed into potent drugs against chloroquine-resistant malarial parasites through further chemistry and DMPK optimization.

9.
Parasitol Res ; 122(11): 2513-2524, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707607

RESUMO

CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.


Assuntos
Malária , Plasmodium yoelii , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Interleucina-10/metabolismo , Interleucina-17 , Interleucina-4 , Fígado , Malária/imunologia , Malária/metabolismo , Camundongos Endogâmicos C57BL
10.
Front Physiol ; 14: 1247316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555020

RESUMO

Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects on Anopheles stephensi following ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned to A. stephensi at healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feeding A. stephensi on Plasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfected A. stephensi weekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfected A. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malaria versus a healthy host.

11.
Antimicrob Agents Chemother ; 67(7): e0160622, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37314349

RESUMO

The increasing burden and spread of resistant malaria parasites remains an immense burden to public health. These factors have driven the demand to search for a new therapeutic agent. From our screening, phebestin stood out with nanomolar efficacy against Plasmodium falciparum 3D7. Phebestin was initially identified as an aminopeptidase N inhibitor. Phebestin inhibited the in vitro multiplication of the P. falciparum 3D7 (chloroquine-sensitive) and K1 (chloroquine-resistant) strains at IC50 values of 157.90 ± 6.26 nM and 268.17 ± 67.59 nM, respectively. Furthermore, phebestin exhibited no cytotoxic against human foreskin fibroblast cells at 2.5 mM. In the stage-specific assay, phebestin inhibited all parasite stages at 100 and 10-fold its IC50 concentration. Using 72-h in vitro exposure of phebestin at concentrations of 1 µM on P. falciparum 3D7 distorted the parasite morphology, showed dying signs, shrank, and prevented reinvasion of RBCs, even after the compound was washed from the culture. An in silico study found that phebestin binds to P. falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP), as observed for bestatin. In vivo evaluation using P. yoelii 17XNL-infected mice with administrations of 20 mg/kg phebestin, once daily for 7 days, resulted in significantly lower parasitemia peaks in the phebestin-treated group (19.53%) than in the untreated group (29.55%). At the same dose and treatment, P. berghei ANKA-infected mice showed reduced parasitemia levels and improved survival compared to untreated mice. These results indicate that phebestin is a promising candidate for development as a potential therapeutic agent against malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminopeptidases/uso terapêutico , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Cloroquina/farmacologia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium berghei
12.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240201

RESUMO

Sepsis is a common disease in sub-Saharan Africa and Asia, where malaria is also prevalent. To determine whether Plasmodium infection might enhance susceptibility to endotoxin shock, we used a mouse model of lipopolysaccharide (LPS) administration. Our results indicated that Plasmodium yoelii infection in mice strongly enhanced the susceptibility of the host to develop endotoxin shock. This increased susceptibility to endotoxin shock was correlated with a synergistic effect of Plasmodium and LPS on the secretion of Tumor Necrosis Factor (TNF). TNF contributed mostly to lethality after the dual challenge since neutralization with an anti-TNF antibody provided protection from death. Plasmodium infection also induced an enhancement of the serum levels of LPS soluble ligands, sCD14 and Lipopolysaccharide Binding Protein. In this regard, our data confirm that Plasmodium infection can profoundly modify responses to secondary bacteria challenges, resulting in dysregulated cytokine expression and pathological effects. If confirmed in humans, LPS soluble receptors might serve as markers of susceptibility to septic shock.


Assuntos
Malária , Plasmodium yoelii , Choque Séptico , Humanos , Camundongos , Animais , Choque Séptico/metabolismo , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
13.
J Biol Chem ; 299(7): 104871, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247760

RESUMO

Malaria causes >600 thousand fatalities each year, with most cases attributed to the human-infectious Plasmodium falciparum species. Many rodent-infectious Plasmodium species, like Plasmodium berghei and Plasmodium yoelii, have been used as model species that can expedite studies of this pathogen. P. yoelii is an especially good model for investigating the mosquito and liver stages of development because key attributes closely resemble those of P. falciparum. Because of its importance, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. Although this was a breakthrough effort, the assembly consisted of >5000 contiguous sequences that adversely impacted the annotated gene models. While other rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using PacBio DNA sequencing. In addition, we use Nanopore and Illumina RNA sequencing of mixed blood stages to create complete gene models that include coding sequences, alternate isoforms, and UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic framework for studies with this commonly used rodent malaria model species.


Assuntos
Malária , Parasitos , Plasmodium yoelii , Animais , Humanos , Plasmodium yoelii/genética , Roedores , Malária/parasitologia , Fígado
14.
Exp Parasitol ; 246: 108475, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707015

RESUMO

Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.


Assuntos
Antimaláricos , Malária , Parasitos , Plasmodium yoelii , Humanos , Animais , Camundongos , Parasitos/metabolismo , Proteína A6 Ligante de Cálcio S100 , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Imunidade Celular , Plasmodium yoelii/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico
15.
Parasit Vectors ; 16(1): 40, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717945

RESUMO

BACKGROUND: The liver is responsible for a range of functions in vertebrates, such as metabolism and immunity. In malaria, the liver plays a crucial role in the interaction between the parasite and host. Although malarial hepatitis is a common clinical complication of severe malaria, other malaria-related liver changes have been overlooked during the blood stage of the parasite life-cycle, in contrast to the many studies that have focused on parasite invasion of and replication in the liver during the hepatic stage of the parasite. METHODS: A rodent model of malaria was established using Plasmodium yoelii strain 17XL, a lethal strain of rodent malaria, for liver transcriptomic profiling. RESULTS: Differentially expressed messenger RNAs were associated with innate and adaptive immune responses, while differentially expressed long noncoding RNAs were enriched in the regulation of metabolism-related pathways, such as lipid metabolism. The coexpression network showed that host genes were related to cellular transport and tissue remodeling. Hub gene analysis of P. yoelii indicated that ubiquitination genes that were coexpressed with the host were evolutionarily conserved. CONCLUSIONS: Our analysis yielded evidence of activated immune responses, aberrant metabolic processes and tissue remodeling changes in the livers of mice with malaria during the blood stage of the parasite, which provided a systematic outline of liver responses during Plasmodium infection.


Assuntos
Malária , Plasmodium yoelii , Animais , Camundongos , Transcriptoma , Malária/parasitologia , Perfilação da Expressão Gênica , Fígado/parasitologia
16.
Vaccine ; 41(7): 1281-1285, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36653222

RESUMO

Genetically-growth-attenuated blood-stage parasites were generated inPlasmodium falciparumby targeted deletion of NT1 (Nucleoside Transporter-1) gene, and Pfnt1(-) parasites only grew after providing the culture with supra-physiological concentrations of purines. Genetically-attenuatedP. yoeliint1(-)parasites induced sterile-protection against homologous blood-stage infectious challenge after immunization with single subpatent doses, which remained subpatent even in immune-compromised mice. Here, we showed that immunizations with frozen-stocks of equally-mixedP. bergheiandP. yoelii nt1(-)parasites in single subcutaneous doses, which did not lead to patent blood-stage infection, conferred sterile protection against intravenous infectious blood-stage challenge with wild-type parasites ofP. bergheiANKA andP. yoelii17X-NL strains. This data highlights the possibility that a single subcutaneous sub-patent dose of two species of genetically-growth-attenuated parasites, which can protect humans against twoPlasmodiumspp. infections, could be developed in cultures provided with supra-physiological concentrations of purines, and shipped to endemic areas as frozen-stock doses.


Assuntos
Vacinas Antimaláricas , Malária , Parasitos , Plasmodium yoelii , Plasmodium , Humanos , Camundongos , Animais , Imunização , Vacinação , Plasmodium berghei
17.
Mol Biochem Parasitol ; 253: 111540, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509228

RESUMO

Recently, there is a paucity of studies focus on the characteristics of myeloid cells which expressed γδTCR. The aim of this study was to observe the properties of γδTCR-expressing myeloid cells in the spleen of C57BL/6 mice infected by P. yoelii nigeriensis NSM. Haematoxylin-eosin (HE) staining was used to observe pathological changes in the spleens from infected mice. The differentially expressed genes (DEGs) between the infection and control groups were analyzed by RNA sequencing (RNA -seq). Flow cytometry (FCM) was used to evaluate the frequency of γδTCR+ cells and the characteristics of γδTCR+ cells in P. yoelii nigeriensis NSM-infected mice. Obvious infiltration of inflammatory were observed in the spleens from infected C57BL/6 mouse. The proportions of γδTCR+ cells and CD11b+ γδTCR+ cells from infected group were higher than that from normal group. CD11b+ γδTCR+ cells expressed high levels of activated-mediated genes and inflammatory-mediated genes. The heterogeneous pathway activities among CD11b+ γδTCR+ cells from normal and infected group were characterized. The oxidative phosphorylation, respiratory electron transport chain and leukocyte activation involved in immune response pathways were up-regulated, while the alpha-beta T cell activation and myeloid leukocyte migration pathways were down-regulated in infected mice. Importantly, Ly6c2 was higher expressed in CD11b+ γδTCR+ cells than Ly6g. Consistent with it, flow cytometry results revealed that a subset of Ly6C+ cells was higher than Ly6G+ cells in the spleen. Taken together, our data suggest the existence of a population of γδTCR-expressing myeloid cells and they might be multifunctional cells, which play a role in couse of Plasmodium infection.


Assuntos
Malária , Células Mieloides , Plasmodium yoelii , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Camundongos , Citometria de Fluxo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Plasmodium yoelii/fisiologia
18.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559287

RESUMO

Methylene blue (MB) is the oldest synthetic anti-infective. Its high potency against asexual and sexual stages of malaria parasites is well documented. This study aimed to investigate possible additional activities of MB in interfering with parasite transmission and determine target stages in Anopheles vectors and humans. MB's transmission-blocking activity was first evaluated by an ex vivo direct membrane feeding assay (DMFA) using Plasmodium falciparum field isolates. To investigate anti-mosquito stage activity, Plasmodium berghei-infected Anopheles stephensi mosquitoes were fed a second blood meal on mice that had been treated with methylene blue, 3, 6- and 15-days after the initial infectious blood meal. Anti-sporozoite and liver stage activities were evaluated in vitro and in vivo via sporozoite invasion and liver stage development assays, respectively. MB exhibited a robust inhibition of P. falciparum transmission in An. gambiae, even when added shortly before the DMFA but only a moderate effect against P. berghei oocyst development. Exposure of mature P. berghei and P. falciparum sporozoites to MB blocked hepatocyte invasion, yet P. berghei liver stage development was unaffected by MB. Our results indicate previously underappreciated rapid specific activities of methylene blue against Plasmodium transmission stages, preventing the establishment of both mosquito midgut and liver infections as the first essential steps in both hosts.

19.
Antimicrob Agents Chemother ; 66(12): e0026922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36342168

RESUMO

We generated highly chloroquine (CQ)-resistant (ResCQ) Plasmodium yoelii parasites by stepwise exposure to increasing concentrations of CQ and CQ-sensitive parasites (SenCQ) by parallel mock treatments. No mutations in genes that are associated with drug resistance were detected in ResCQ clones. Autophagy-related genes were highly upregulated in SenCQ compared to ResCQ parasites during CQ treatment. This indicates that CQ resistance can be developed in the malaria parasite by the inhibition of autophagy as an alternative drug resistance mechanism.


Assuntos
Antimaláricos , Cloroquina , Resistência a Medicamentos , Plasmodium yoelii , Proteínas de Protozoários , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Protozoários/genética , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/genética
20.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36366392

RESUMO

Host cell-free, axenic development of liver stages (LS) of the malaria parasite has been demonstrated. Here we explored axenic liver stages as a novel live whole parasite malaria vaccine platform, which is unaltered and not prone to human-error, compared to the immunization with live-attenuated sporozoites that must be done intravenously. We show that in contrast to live sporozoites, axenic LS are not infectious to the immunized host. Subcutaneous immunizations of mice with Plasmodium yoelii axenic LS, developed from wild-type (WT) sporozoites or WT sporozoites expressing enhanced-GFP, conferred sterile protection against P. yoelii infectious sporozoite challenge. Thus, axenic liver stages of P. falciparum and P. vivax might constitute an attractive alternative to live sporozoite immunization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...