Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microbiologyopen ; 8(4): e00703, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30117306

RESUMO

Arbuscular mycorrhizal fungi (AMF) are worldwide distributed plant symbionts. However, their occurrence in hydrocarbon-polluted environments is less investigated, although specific communities may be present with possible interest for remediation strategies. Here, we investigated the AMF community composition associated with the roots of diverse plant species naturally recolonizing a weathered crude oil pond in the Amazon region of Ecuador. Next generation 454 GS-Junior sequencing of an 800 bp LSU rRNA gene PCR amplicon was used. PCR amplicons were affiliated to a maximum-likelihood phylogenetic tree computed from 1.5 kb AMF reference sequences. A high throughput phylogenetic annotation approach, using an evolutionary placement algorithm (EPA) allowed the characterization of sequences to the species level. Fifteen species were detected. Acaulospora species were identified as dominant colonizers, with 73% of relative read abundance, Archaeospora (19.6%) and several genera from the Glomeraceae (Rhizophagus, Glomus macrocarpum-like, Sclerocystis, Dominikia and Kamienskia) were also detected. Although, a diverse community belonging to Glomeraceae was revealed, they represented <10% of the relative abundance in the Pond. Seventy five % of the species could not be identified, suggesting possible new species associated with roots of plants under highly hydrocarbon-polluted conditions.


Assuntos
Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Micorrizas/metabolismo , Petróleo/análise , Plantas/microbiologia , Poluentes do Solo/análise , Equador , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Hidrocarbonetos/análise , Hidrocarbonetos/metabolismo , Micorrizas/classificação , Micorrizas/genética , Petróleo/metabolismo , Filogenia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
2.
Braz. J. Microbiol. ; 49(3): 471-480, jul.-set. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-734822

RESUMO

Escalating burden of antibiotic resistance that has reached new heights present a grave concern to mankind. As the problem is no longer confined to clinics, we hereby report identification of a pandrug resistant Escherichia coli isolate from heavily polluted Delhi stretch of river Yamuna, India. E. coli MRC11 was found sensitive only to tobramycin against 21 antibiotics tested, with minimum inhibitory concentration values >256 µg/mL for amoxicillin, carbenicillin, aztreonam, ceftazidime and cefotaxime. Addition of certain heavy metals at higher concentrations were ineffective in increasing susceptibility of E. coli MRC11 to antibiotics. Withstanding sub-optimal concentration of cefotaxime (10 µg/mL) and mercuric chloride (2 µg/mL), and also resistance to their combinatorial use, indicates better adaptability in heavily polluted environment through clustering and expression of resistance genes. Interestingly, E. coli MRC11 harbours two different variants of blaTEM (blaTEM-116 and blaTEM-1 with and without extended-spectrum activity, respectively), in addition to mer operon (merB, merP and merT) genes. Studies employing conjugation, confirmed localization of blaTEM-116, merP and merT genes on the conjugative plasmid. Understanding potentialities of such isolates will help in determining risk factors attributing pandrug resistance and strengthening strategic development of new and effective antimicrobial agents.(AU)


Assuntos
Escherichia coli , Escherichia coli/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Genes MDR , Desastres Provocados pelo Homem , Metais Pesados , Poluição da Água/efeitos adversos
3.
Braz. j. microbiol ; Braz. j. microbiol;49(3): 471-480, July-Sept. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951821

RESUMO

Abstract Escalating burden of antibiotic resistance that has reached new heights present a grave concern to mankind. As the problem is no longer confined to clinics, we hereby report identification of a pandrug resistant Escherichia coli isolate from heavily polluted Delhi stretch of river Yamuna, India. E. coli MRC11 was found sensitive only to tobramycin against 21 antibiotics tested, with minimum inhibitory concentration values >256 µg/mL for amoxicillin, carbenicillin, aztreonam, ceftazidime and cefotaxime. Addition of certain heavy metals at higher concentrations were ineffective in increasing susceptibility of E. coli MRC11 to antibiotics. Withstanding sub-optimal concentration of cefotaxime (10 µg/mL) and mercuric chloride (2 µg/mL), and also resistance to their combinatorial use, indicates better adaptability in heavily polluted environment through clustering and expression of resistance genes. Interestingly, E. coli MRC11 harbours two different variants of blaTEM (blaTEM-116 and blaTEM-1 with and without extended-spectrum activity, respectively), in addition to mer operon (merB, merP and merT) genes. Studies employing conjugation, confirmed localization of blaTEM-116, merP and merT genes on the conjugative plasmid. Understanding potentialities of such isolates will help in determining risk factors attributing pandrug resistance and strengthening strategic development of new and effective antimicrobial agents.


Assuntos
Metais Pesados/farmacologia , Farmacorresistência Bacteriana Múltipla , Rios/microbiologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Óperon , beta-Lactamases/genética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Índia
4.
Braz J Microbiol ; 49(3): 471-480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449175

RESUMO

Escalating burden of antibiotic resistance that has reached new heights present a grave concern to mankind. As the problem is no longer confined to clinics, we hereby report identification of a pandrug resistant Escherichia coli isolate from heavily polluted Delhi stretch of river Yamuna, India. E. coli MRC11 was found sensitive only to tobramycin against 21 antibiotics tested, with minimum inhibitory concentration values >256µg/mL for amoxicillin, carbenicillin, aztreonam, ceftazidime and cefotaxime. Addition of certain heavy metals at higher concentrations were ineffective in increasing susceptibility of E. coli MRC11 to antibiotics. Withstanding sub-optimal concentration of cefotaxime (10µg/mL) and mercuric chloride (2µg/mL), and also resistance to their combinatorial use, indicates better adaptability in heavily polluted environment through clustering and expression of resistance genes. Interestingly, E. coli MRC11 harbours two different variants of blaTEM (blaTEM-116 and blaTEM-1 with and without extended-spectrum activity, respectively), in addition to mer operon (merB, merP and merT) genes. Studies employing conjugation, confirmed localization of blaTEM-116, merP and merT genes on the conjugative plasmid. Understanding potentialities of such isolates will help in determining risk factors attributing pandrug resistance and strengthening strategic development of new and effective antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Metais Pesados/farmacologia , Rios/microbiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Índia , Testes de Sensibilidade Microbiana , Óperon , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA