Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(11): 1040, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39384588

RESUMO

Three soil transects located in the granitic regions of Palamaner mandal, Andhra Pradesh, India, were examined to assess the pollution levels of both primary and secondary metals (Si, Al, Fe, Ca, Mg, Na, K, Cu, Mn, P, and Zn) and to ascertain the degree of soil pollution in agricultural areas. The soils along these transects are slightly acid to neutral, with dark brown to red rubified argillic clay-rich B horizons alongside a moderate cation exchange capacity. The A horizon soils display low organic carbon levels with a moderate variability and contain over 70% SiO2, exhibiting low variability due to limited leaching in a semiarid climate. The findings suggest that iron (Fe) and manganese (Mn) oxides play a role in reducing contamination levels through oxidation and precipitation processes. Furthermore, the soils show low to moderate cation exchange capacity, which restricts the retention of absorbed heavy metals, thus lessening their negative impacts. A two-way ANOVA revealed significant differences in CEC, organic carbon, and total zinc content across different horizons and landscape positions. Si, Al, and Cu had small increases and negative geoaccumulation indices in all soil profiles, suggesting no pollution. However, the Nemerow and mean contamination degree over 6 point to slight to moderate pollution. The analysis identified three distinct clusters with significant variations in contamination factors for SiO2 and Cu. Five principal components were determined, explaining 76% of the total variance, primarily derived from geogenic sources and remaining within acceptable limits. This research on soil transects in granitic regions contributes to a better understanding of the distribution, movement, and concentration of elemental oxides based on slope position, which is essential for pollution assessment and soil quality enhancement.


Assuntos
Agricultura , Monitoramento Ambiental , Poluentes do Solo , Solo , Índia , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Solo/química , Metais Pesados/análise , Oligoelementos/análise
2.
Nat Prod Res ; : 1-11, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267342

RESUMO

The mangrove, a vital ecosystem, faces significant threats from climate change, human actions, and pollution. This study aims to evaluate the presence and distribution of trace metals (Cu, Cd, Ni, Pb, and Zn) in Avicennia marina leaves and sediments, shedding light on A. marina's antioxidant capabilities amidst metal pollution. Samples were gathered from Pichavaram coastal areas. Various pollution indices such as contamination factor (CF), pollution load index (PLI), and bio concentration factor (BCF) were utilised to gauge pollution levels. Analysis via LC/MS,1H & 13C-NMR, and GC/MS revealed 52 compounds in the methanolic extract of A. marina notably; the extract contains pentanoic acid, decanoic acid, diethyl hydroxylamine, pyrrolidine, 4-chlorophenyl, octadecylisocyanate, thiazolidinones, and arabinopyranoside. These compounds exhibit diverse biological properties, such as antioxidative, anticancer, antimicrobial, anti-inflammatory, antiallergic, antiaging, and antiartherosclerotic effects, making them promising herbal medicines with minimal adverse effects and maximum efficacy, thereby improving the quality of life during treatment.

3.
Environ Geochem Health ; 46(10): 419, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249566

RESUMO

Metals and metalloids tainting sediments is an eminent issue, predominantly in megacities like Mumbai and Navi Mumbai, requiring an exhaustive examination to identify metal levels in river bodies that serve various populations. Thus, utilising pollution indices, multivariate analysis, and health risk assessment studies, we propose a novel investigation to examine the metal content in the Ulhas River sediments, a prominent agricultural and drinking water supply (320 million-litre per day) near Mumbai in Maharashtra, India. The eleven metals and metalloids (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were examined monthly from 10 stations totaling 120 sediment specimens from October 2022 to September 2023. Investigations revealed that average values of Cr, Cu, Hg, and Ni exceeded Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council values, while all metals exceeded World surface rock average limits except As. Various pollution indices showed that upstream sites had none to low level contamination, whereas downstream locations had moderate to considerable contamination, suggesting anthropogenic influences. Furthermore, multivariate analysis including correlation, cluster, and principal component analysis identified that sediment pollution was mostly caused by anthropogenic activities. Lastly, health risk assessment indicated Fe was non-carcinogenic to children, whereas Cr and Ni were carcinogenic to children and adults, with children being more susceptible. Thus, from the findings of the study it is clear that, despite low to moderate pollution levels, metals may have significant repercussions, thus requiring long-term planning, frequent monitoring, and metal abatement strategies to mitigate river contamination.


Assuntos
Sedimentos Geológicos , Metais Pesados , Rios , Poluentes Químicos da Água , Índia , Sedimentos Geológicos/química , Medição de Risco , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Humanos , Monitoramento Ambiental
4.
Heliyon ; 10(12): e32620, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39183883

RESUMO

For the first time, different pollution indices and a receptor model have been used to quantify eco-environmental and health risk assessments as well as identify the sources of potentially toxic elements in soil along the Barapukuria Coal Mine (BCM). Individual indices include enrichment and contamination factors showing the soil samples are moderately to highly contaminated by arsenic, cobalt, chromium, copper, lead, and zinc and heavily contaminated by sulfur. According to the geo-accumulation index, there is significant pollution with arsenic (1.24 ± 0.38), lead (1.49 ± 0.58), cobalt (1.49 ± 0.58), and sulfur (1.63 ± 0.38). Modified hazard quotient and ecological risk factor values also suggest low to moderate environmental risk hazards from the same elements. The nemerow pollution index, pollution load index, nemerow risk index, ecological risk index, and toxic risk index of soil range from 1.65 to 3.03, 0.82-1.23, 11-26, 77-165, and 6.82-11.76 suggest low toxic risk and moderate pollution, among other synergistic indices. Health risk assessment indicates that iron poses lower cancer risk for children than adults, while both face unacceptable cancer risks from inhaling chromium, cobalt, or arsenic. Principal component and phylogenetic cluster analysis extracted by the multiple linear regression with the absolute principal component score (APCS-MLR) model refer to the fact that manganese, iron, titanium, and nickel have originated from geogenic sources, while coal mine effluents enrich elements like arsenic, chromium, zinc, lead, uranium, sulfur, thorium, and zinc and phosphorous sourced from agriculture. In addition, geogenic and anthropogenic sources, including mine and agriculture activities, could potentially pollute the soil and ecosystem. The findings are crucial for regional and national planners in devising strategies to mitigate potentially toxic element pollution in soil along coal mine areas.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39200616

RESUMO

This article investigates the extent of heavy metal pollution in both urban and rural gardens in Pavlodar, which cultivate potatoes and tomatoes. As a city of industrialization, Pavlodar is exposed to emissions from industrial enterprises, transport and stove heating. The city also has the highest incidence of environmental diseases among the population. This study examines the accumulation of heavy metals and metalloid in the snow, their migration into the soil and their accumulation in plants, and assesses the non-cancer and cancer health risks of consuming these vegetables. The results show that the concentrations of trace elements in the solid phase of snow decrease in the following order: Fe (26,000) > Mn (592.5) > Cr (371.3) > Zn (338.8) > Pb (161.9) > Cu (142.5) > Ni (30.9) > As (15.1) > Co (12.1) > Cd (2.6). In soils, the concentrations of elements decrease in the following order: Mn (22,125) > Fe (20,375) > Zn (246.9) > Cr (109.5) > Cu (39.3) > Pb (25.6) > Ni (22.4) > As (9) > Co (6.6) > Cd (0.2). In urban gardens, the snow pollution coefficient was the highest. In rural gardens, the contamination index varied from 0.3 (Cr) to 5.3 (Cd). Magnesium in the soil exceeds the maximum allowable concentration (MPC) by 28.6-35.7 times, and zinc by 1.6-10.9 times. Only zinc and copper exceed the MPC for vegetables. Nickel in potatoes exceeds MPC by a factor of 6 and in tomatoes by a factor of 4.4. The cobalt content in tomatoes exceeds the background value by 2.2 times, with a maximum value of 5.3 times. The risk assessment showed that the non-carcinogenic and carcinogenic risks associated with potato and tomato consumption were low. However, these risks are higher in urban areas than in rural areas.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Poluentes do Solo/análise , Medição de Risco , Humanos , Cazaquistão , Neve/química , Jardins , Monitoramento Ambiental , Solo/química , Cidades , Solanum lycopersicum/química
6.
Environ Monit Assess ; 196(8): 755, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031288

RESUMO

In this study, the environmental quality of agricultural soils around the Kalsaka abandoned gold mine was evaluated. A total of 117 samples including industrial mine wastes, topsoil, and control soil were collected in and around the mine, and their heavy metal concentrations were determined using ICP-MS after aqua regia digestion. Except for Zn, the average concentrations of the metals were higher in mine wastes and the agricultural soils than their average upper continental crust (UCC) counterpart, whereas those of Ag, As, and Hg exceeded the UCC in the control soils. The control soils had the lowest contaminations and the lowest pollution levels for all metals except for Hg. Based on the average concentrations and coefficients of variation, it can be concluded that Cr, Ni, and Zn abundance in the agricultural soils was controlled by natural factors, whereas that of Ag, As, Hg, Co, Cu, and Mn was mainly associated with mining. The absence of Hg in industrial mine wastes and its high contents in agricultural and control soils reflected the artisanal gold mining source of this metal. Thus, single and integrated pollution indices showed that ecological risk and toxicity are much higher when Hg is included in the index calculation, suggesting cumulative effects of industrial and artisanal gold mining on the agricultural soil quality. The results also showed that Hg and As are the pollutants of major concern in the Kalsaka abandoned gold mine. Because of its proximity to human settlements, the Kalsaka abandoned gold mine necessitates an immediate rehabilitation.


Assuntos
Agricultura , Monitoramento Ambiental , Ouro , Metais Pesados , Mineração , Poluentes do Solo , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química , Burkina Faso
7.
Environ Monit Assess ; 196(8): 763, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052122

RESUMO

The soil, comprising minerals, organic matter, and living organisms, serves as a critical component of our environment. However, anthropogenic activities, such as uncontrolled sewage disposal and industrial waste, have led to pervasive soil pollution, impacting ecosystems and human health. This comprehensive study scrutinizes the intricate dynamics of soil pollution resulting from open waste dumping, specifically examining its impact on the health of local communities and the environment in Haridwar municipality. In this study, four solid waste dumping sites were meticulously surveyed, with soil samples analyzed for 19 parameters through statistical tools like one-way ANOVA, Kruskal-Wallis tests, soil pollution indices, and potential health risk assessment. The Geo-accumulation Index (Igeo) and contamination factor (CF) followed the heavy metals in the order of Zn > Mn > Fe > Cu in all selected sites. Additionally, a potential health risk assessment considered ingestion, inhalation, and dermal exposure pathways, revealing a high non-carcinogenic risk of metals (Mn > Fe > Zn > Cu) for both children and adults. In the ingestion pathway, the hazard quotient indicated a high risk of metals for both children and adults in the range of 1192.73 to 2066.94 for child and 191.98 to 312.16 for adults. Crucially, the HQ revealed potential health risks, emphasizing the urgency of addressing metal contamination. However, the findings indicate that dumping sites directly or indirectly affects the local people of Haridwar municipality. Therefore, this study provides a baseline framework for minimizing the impact of dumping sites on local population and the environment.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Solo , Instalações de Eliminação de Resíduos , Poluentes do Solo/análise , Humanos , Medição de Risco , Metais Pesados/análise , Solo/química , Resíduos Sólidos/análise , Eliminação de Resíduos
8.
Environ Monit Assess ; 196(8): 771, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085500

RESUMO

In this study, a total of 180 Pinus eldarica bark samples were collected from different regions of Hamedan megacity, Iran, in 2023, and contents of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the samples were determined using ICP-OES. The results illustrated that the average contents of all the analyzed elements were greater than those in the background contents, which presumably demonstrated anthropogenic sources of these potentially toxic elements (PTEs). The greatest concentrations of the analyzed PTEs for different functional areas were observed in specimens collected from commercial or industrial areas, indicating the impact of human entries. The I-geo values were in the range of "unpolluted to moderately polluted" to "moderately to heavily polluted", PI showed "moderate to very high pollution", and PLI reflected high to very high pollution levels for the whole study area. Additionally, the cumulative mean value of ecological risk (RI) was found to be 152, demonstrating moderate ecological risk across the study area. The results of positive matrix factorization (PMF) showed that the PTE contamination in the air of Hamedan could mainly have an anthropogenic origin (82.7%) and that the traffic emissions as the primary pollution source (33.6%) make the highest contribution to the PTE pollution and ecological risks in the study area. In residential areas, demolition and construction activities could be considered the main sources of PTEs, while in commercial and industrial areas traffic emissions and industrial emissions, could be regarded as the main sources of such pollution, respectively. In conclusion, this study provides a useful approach to identifying the sources and contributions of the toxic elements in different functional areas and can inform future endeavors that aim at managing and controlling metal element pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Pinus , Casca de Planta , Oligoelementos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Pinus/química , Oligoelementos/análise , Irã (Geográfico) , Casca de Planta/química , Metais Pesados/análise , Poluição do Ar/estatística & dados numéricos , Cidades
9.
Environ Sci Pollut Res Int ; 31(37): 49874-49890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39083175

RESUMO

Iron-steel (IS) and textile (T) are among the major polluting industries worldwide which generate large quantities of effluents containing potentially toxic metals (PTMs). Irrigation application of these effluents due to freshwater shortage is a common practice in developing countries. The current research endeavors to investigate potentially toxic metals in IS and T effluents, contamination status and ecological risk assessment of irrigated soils, PTMs accumulation in grains of diverse wheat germplasm and human health risk appraisal. Soil irrigation with effluents significantly enhanced soil nitrate-nitrogen (T, 285.86 mg/kg; IS, 539.70 mg/kg), phosphorus (T, 8.35 mg/kg; IS, 11.44 mg/kg), organic matter (T, 6.05%; IS, 4.48%) and PTMs contents compared to control (C). Enrichment factor and geo-accumulation index revealed substantial contamination trend of PTMs in IS (Ni > Cr > Co > Cd > Pb > Zn > Mn) and T (Co > Cd > Ni > Cu > Cr) treated soils. Potential ecological risk index and modified potential ecological risk index placed T (very high risk) and IS (considerable risk) irrigated soils in respective categories, with highest risk contributions from Cd, Co and Ni. The interactive effects for PTMs accumulation in grains of 30 wheat genotypes were recorded significant. Average PTMs accumulation in grains for the three irrigation treatments was IS > T > C for Zn, Cr, Mn, Pb, Fe, Ni and T > IS > C for Co, Cd, Cu. Multivariate statistical analysis ( principal component analyses) was used to identify the wheat genotypes with higher or lower grain PTMs accumulative potential on effluent irrigation. The genotypes with a lower grain PTMs accumulation and human health risks are recommended for cultivation in agro-systems receiving IS and T effluents, in order to safeguard wheat crop and human health.


Assuntos
Irrigação Agrícola , Poluentes do Solo , Solo , Triticum , Poluentes do Solo/análise , Solo/química , Humanos , Medição de Risco , Monitoramento Ambiental
10.
Sci Rep ; 14(1): 16938, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043749

RESUMO

Phytoremediation is a basic eco-friendly technique that uses to treat contaminated water and soil. The plants that remediate the water and soil by their absorption process and improve the water and sediment fertility or decrease the contamination. Form this experiment our finding suggest that the contamination decrease in majority from starting point to end point, it means plants plays the most important role in clean-up the environment and its cost-efficient method to improve the quality of water and soil. This study was carried out on Uben River which is around 50kms long and we covered around 41.88kms of area which divided into six locations. in soil minerals (Ca2+, Mg2+, Na+ and K+) from Up-stream to Down-stream the concentration of minerals is in decreasing order but in heavy metals (Cu2+, Zn2+, Fe2+ and Mn2+) the concentration data is varying. We selected plants that grow around riverbanks belongs to family Cyperaceae, Poaceae, Typhaceae. Most of the plants accumulate high Fe2+ concentrations in their root while in the shoots have low concentration observed from our data. For the statistical validation of data, we perform Grouped Component Analysis (GCA) and Radial Cluster Hierarchy (RCH) analysis. Further we included pollution indices: Contamination factor (CF), Degree of contamination (Cd), Geo accumulation index (Igeo).


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Rios , Índia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Metais Pesados/análise , Metais Pesados/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Solo/química
11.
J Hazard Mater ; 477: 135374, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084010

RESUMO

Microplastics (MPs) are polymer-based particles commonly found in diverse foods that pose serious human health impacts throughout the food chain. Assessment of MPs in different food products is a prime measure to combat MP-related food contamination. Therefore, this study first investigated the identification, characterization, and potential risks of MPs in the commercially available milk brands (19 dry powders and 06 liquid brands) in Bangladesh. The presence of MPs in milk samples was 279.47 ± 134.26 particles/kg and 182.27 ± 55.13 particles/L for powder and liquid milk, respectively, with a significant variety. Study findings displayed miscellaneous colors, fiber shapes (powder=78 %; liquid=81 %), > 0.1 mm sizes (powder=69 %; liquid=65 %), and polyethylene (powder=48 %; liquid=44 %) dominating MPs categories. The pollution load index indicated significant pollution due to the high abundance of MPs. Further, other risk-evaluating indices including contamination factor and Nemerow pollution index represent moderate to high MP-induced pollution for both milk samples. Low to moderate polymeric risks are exhibited by powder and liquid milk samples. Children could be exposed to 3.43 times higher MPs than adults through daily oral ingestion, which has significant health effects. This study found that powder milk was the most severely MPs induced risk than liquid milk. Consequently, this study finding established a reference point for MP contamination in milk, so special attention must be taken during production, storage, and packaging stages to reduce MP contamination.


Assuntos
Contaminação de Alimentos , Microplásticos , Leite , Bangladesh , Leite/química , Animais , Humanos , Contaminação de Alimentos/análise , Microplásticos/análise , Medição de Risco
12.
Sci Rep ; 14(1): 12641, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825663

RESUMO

In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.


Assuntos
Fertilizantes , Chumbo , Esterco , Verduras , Águas Residuárias , Fertilizantes/análise , Verduras/metabolismo , Verduras/química , Esterco/análise , Águas Residuárias/química , Águas Residuárias/análise , Chumbo/análise , Chumbo/metabolismo , Animais , Poluentes do Solo/análise , Solo/química , Bovinos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/química , Minerais/análise
13.
Int J Phytoremediation ; 26(11): 1824-1838, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38832561

RESUMO

The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (p < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (p < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.


The present study has a scientific research scope, based on reduction of bioavailability and bioaccumulation of toxic heavy metals (THMs) by the addition of biochars derived from agro-wastes and their composite biochar (CB), thereby decreasing the potential health risk. Limited study has been conducted, especially on the impact of CB in THMs-contaminated soil. This study could fill the scientific research gap and provides useful information for mitigation of THMs present in contaminated soil, which could be followed by the Environmental Protection Agency, Ministry of Agriculture and farmers in degraded lands.


Assuntos
Biodegradação Ambiental , Disponibilidade Biológica , Carvão Vegetal , Metais Pesados , Poluentes do Solo , Carvão Vegetal/química , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Solo/química , Resíduos Industriais , Triticum , Oryza
14.
Environ Sci Pollut Res Int ; 31(31): 43633-43658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866934

RESUMO

Burullus lagoon is part of Egypt's protected area network. The lagoon serves as a reservoir for drainage water discharged from agricultural areas, and the lake's sediments provide a unique opportunity to record environmental behavior and reconstruct of the heavy metal contamination history. In the present study, the sediment chronology, sedimentation rates, and metal accumulation fluxes were estimated in four sediment cores using 210Pb dating models to evaluate how human activities have affected the coastal environment. Using the radioisotopes 210Pb and 137Cs, radiometric dating was carried out using gamma-ray spectrometry. At the Egypt Second Research Reactor (ETRR-2), the element concentrations were determined using the instrumented neutron activation analysis (INAA- k0 method). Our findings show that the constant rate of supply (CRS), which has been verified with the peak of artificial radionuclide 137Cs, is the best model performed for the chronology of Burullus Lagoon. The average sedimentation rate, according to 210Pb dating models, is 0.85 cm/year. The large variation in sedimentation rates, especially after the 1990s, is consistent with an increase in the anthropogenic flux of heavy metals. This may be led into a significant environmental problem such as reducing the size of the lake and degrading the quality the water in Burullus Lagoon. Enrichment factor (EF) of the studied elements displayed the following order: Cl > Ca > Na > Br > Zn > Ta > Ti > V > Cr > Sc > Mg > Mn > Fe > Hf which is higher than unity. Furthermore, the Nemerow pollution index (PI Nemerow) revealed that pollution was increasing in the direction of the drains and slightly polluted. Consequently, pollutant indices showed that urbanization and industrial development may have increased the depositional fluxes of the metals in sediments over time.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Egito , Metais Pesados/análise , Sedimentos Geológicos/química , Análise de Ativação de Nêutrons , Poluentes Químicos da Água/análise
15.
Mar Environ Res ; 199: 106595, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879903

RESUMO

A massive fish mortality of the major species, viz., Mugil cephalus, Chanos chanos, and Oreochromis mossambicus, occurred on November 27, 2017 in the Adyar estuary. This catastrophe followed a spell of heavy rainfall and flash floods. A detailed study of water quality parameters (pH, water temperature, salinity, total suspended matter, dissolved oxygen, biochemical oxygen demand, and nutrients) and heavy metals, i.e., chromium (Cr), copper (Cu), cadmium (Cd), nickel (Ni), lead (Pb), and zinc (Zn), in the sediment and fish tissues were analyzed. Pollution indices like the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), pollution load index (PLI), potential ecological risk index (PERI), and biota sediment accumulation factor (BSAF) were used to measure heavy metals. The pollution indices revealed that metals were significantly enriched in the sediments. The Igeo indicates that there was moderate contamination by Cd (2.27-3.25), whereas CF shows high contamination by Cd (7.22-9.72) and moderate contamination by Pb (2.5-3.25). The PLI (1.04-1.13) suggests that heavy metal contamination of sediments has occurred. Results showed that high concentrations of the toxic metals Pb and Cd were found in the sediment as well as in fish tissues. Length and weight of fish are significantly correlated (r2 = 0.98, p < 0.05). The study revealed that the mass fish kill was due to impulsive changes in the water quality and heavy metal pollution from untreated urban sewage discharges in this region.


Assuntos
Monitoramento Ambiental , Estuários , Peixes , Metais Pesados , Poluentes Químicos da Água , Animais , Metais Pesados/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Índia , Sedimentos Geológicos/química , Baías
16.
Environ Geochem Health ; 46(7): 223, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849582

RESUMO

Heavy metal contamination in the soil and phytoremediation potential of the plants cultivated around the Gosa dumpsite were evaluated using pollution indices. The concentrations of heavy metals in the soil and plant samples were determined using an atomic absorption spectrophotometer (Agilent 280FS AA). The mean heavy metal contents in the upper and lower soil layers ranged from 0.37 to 1662.61 mg/kg and 0.32 to 1608.61 mg/kg, respectively, in ascending order of Cd < Cr < Cu < Ni < Pb < Co < Zn < Fe. The results revealed a steady depthwise decrease in heavy metal contents from the upper to lower soil layers. Co, Pb, Zn and Fe were introduced through geogenic and anthropogenic pathways, while Cr, Ni, Cu and Cd were derived mainly from anthropogenic sources. The mean soil enrichment in the heavy metals ranged from 0.96 to 237.04 in the ascending order of Fe > Co > Pb > Zn > Cu > Cd > Cr > Ni. The soil was moderately polluted with Co, Cu, Pb, Zn, Fe and Cd but heavily polluted with Cr and Ni. The results revealed that 37.5% of the sites studied had pollution load indices greater than 1.0, indicating gradual deterioration in overall soil quality. The concentrations of Pb, Cd and Fe exceeded the recommended limits for the five plant species assessed. The transfer factor (TF) values of okra plant 1 (0.7536), water hyacinth (1.3768), and Amaranthus hybridus (0.9783) indicated excellent Cd phytoremediation potential. Okra Plant, water hyacinth and Amaranthus hybridus had excellent potential for phytoremediation of Cu, Fe and Pb, respectively. The study area was strongly enriched in Fe, Cd, Cr, and Ni, suggesting some degree of soil pollution, while the plants demonstrated an excellent capacity to accumulate Cd, Cu, Fe and Pb. This dumpsite should be adequately monitored while proper remediation measures are adopted by government authorities.


Assuntos
Biodegradação Ambiental , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Nigéria , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Monitoramento Ambiental , Solo/química , Plantas/metabolismo , Plantas/química , Espectrofotometria Atômica
17.
J Hazard Mater ; 472: 134359, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691990

RESUMO

Microplastics (MPs) are an emerging global concern due to severe toxicological risks for ecosystems and public health. Therefore, this is the first study in Bangladesh to assess MP pollution and its associated risks for ecosystems and human health in the outdoor urban environment using machine learning and multivariate approaches. The occurrences of MPs in the urban road dust were 52.76 ± 20.24 particles/g with high diversity, where fiber shape (77%), 0.1-0.5 mm size MPs (75%), blue color (26%), and low-density polyethylene (24%) polymer was the dominating MPs category. Pollution load index value (1.28-4.42), showed severe pollution by MPs. Additionally, the contamination factor (1.00-5.02), and Nemerow pollution index (1.38-5.02), indicate moderate to severe MP pollution. The identified polymers based on calculated potential ecological risk (2248.52 ± 1792.79) and polymer hazard index (814.04 ± 346.15) showed very high and high risks, respectively. The occurrences of MPs could effectively be predicted by random forest, and support random vector machine, where EC, salinity, pH, OC, and texture classes were the influencing parameters. Considering the human health aspect, children and adults could be acutely exposed to 19259.68 and 5777.90 MP particles/ year via oral ingestion. Monte-Carlo-based polymers associated cancer risk assessment results indicate moderate risk and high risk for adults and children, respectively, where children were more vulnerable than adults for MP pollution risks. Overall assessment mentioned that Dhaka was the most polluted division among the other divisions.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Microplásticos , Bangladesh , Microplásticos/análise , Microplásticos/toxicidade , Medição de Risco , Monitoramento Ambiental/métodos , Humanos , Poluição Ambiental/análise , Cidades , Análise Multivariada , Poeira/análise
18.
Environ Geochem Health ; 46(6): 207, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767770

RESUMO

This study is on the outskirts of the rapidly growing city of Jaipur, located in the semiarid region of India and gateway to the 'Great Indian Thar' desert, and focused on potentially toxic elements (PTE) pollution in the farmlands around the city. Concentrations of PTE, along with associated soil parameters such as pH, available nitrogen, organic carbon, phosphorus, and potassium, were estimated in agricultural soil samples near an industrial region on the outskirts of the capital city of the largest state of India. The PTE concentrations in the soil were in the following order: Mn > Pb > Ni > Cr > Cu > Cd. Soil pollution indices, such as the geochemical accumulation index (Igeo), contamination factor (CF), and ecological risk index (ERI), indicated that the soil was moderately to highly polluted. The result of BCR extraction techniques showed Cd is found mainly in the exchangeable and residual fractions, Pb, Mn were found in the reducible as well as residual fractions, while other PTE were mostly bound to residual fraction. All other PTEs are primarily found in the residual fraction, tightly linked with the silicate lattice of soil minerals. Multivariate analysis and the Pearson correlation matrix indicate a common source apportionment for Pb and Cd. Cd, and Pb concentrations in agricultural soil indicate ecological harm that warrants immediate attention and policy-level intervention.


Assuntos
Agricultura , Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Solo , Índia , Poluentes do Solo/análise , Medição de Risco , Monitoramento Ambiental/métodos , Metais Pesados/análise , Solo/química , Cidades
19.
Chemosphere ; 358: 141979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685324

RESUMO

Metal contamination in drinking water has drawn attention since it gravely jeopardizes human health. This study was conducted in pre- and post-monsoon season in 2021 at Dhemaji, Assam, India. It characterized metal pollutants in groundwater, their distribution, possible sources, and evaluated the potential toxicity and associated health risk assessment. The seasonal mean concentration of Fe in both seasons is observed highest followed by Mn, Zn, Cu, As, and Ni. Furthermore, the metal concentrations during pre-monsoon are comparatively higher. The geogenic processes and agricultural practices are the major sources of groundwater metal contamination as evident from the statistical analysis. The different pollution indices viz. Heavy-metal Pollution Index (HPI), Heavy-metal Evaluation Index (HEI) and Degree of Contamination (Cd) suggested that groundwater is not suitable for drinking uses. The Heavy Metal Toxicity Load (HMTL) suggesting As, Co, Mn and Hg should be removed from the groundwater to ensure safety. Water pollution indices (WPI) suggest that Fe, Mn, As and Ni are the main pollution-causing metals in the study area which may be restored under the BIS and WHO limit by diluting the water. The human health risk has been calculated by carcinogenic and non-carcinogenic risk assessment. The non-carcinogenic risk for adults and children is within the threshold limit. The carcinogenic risk shows that continuous exposure of As and Ni may give rise to cancer among adults and children in the region. Therefore, comprehensive groundwater quality monitoring with well-planned treatment should be needed to provide safe and clean drinking water in the studied area.


Assuntos
Água Potável , Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Água Subterrânea/química , Metais Pesados/análise , Metais Pesados/toxicidade , Índia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Medição de Risco , Humanos , Água Potável/química , Água Potável/análise , Estações do Ano
20.
Mar Pollut Bull ; 202: 116387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663346

RESUMO

The concentrations of 11 heavy metals in sediments from Lake Edku, Egypt were determined using LA-ICP-MS. The average concentrations of elements occurred in the order of Fe > V > Cr > Zn > Ni > Cu > Co > Pb > As > Sn > Mo with respective values of 4.67 %, 104.8, 77.9, 76.6, 59.2, 52, 27.8, 19.8, 4.14, 2.24, and 1.45 µg/g. Several pollution indices were used to evaluate individual and cumulative contamination levels. All HMs were found to be in the deficiency to minimal enrichment range based on the enrichment factor. The contamination factor indicated low contamination levels of Cr and As, low to moderate contamination levels of Fe, Ni, Zn, Mo, Sn, and Pb, and moderate contamination levels of Co and Cu. The pollution load index and contamination degree indicated the sediments to be polluted and moderately polluted, respectively.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Espectrometria de Massas , Metais Pesados , Poluentes Químicos da Água , Egito , Lagos/química , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA